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Organizational

Language: English

Lecture: Tuesday, 13:00 - 14:30, MI 01.06.011

Exercise course: Friday, 10:00 - 10:45, MI 01.06.011

Credits: 2+1 SWS / 4,0 ECTS

Final exam (oral)

The homeworks will contain written questions and questions that require
some R programming.

Exercise course on Friday 06.05.2011 will be an introduction to R
(programming).
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Overview

Theoretical Limits of Virus Scanners

Brief Warm-Up in Probability

Naive Bayes Classifier

Probabilistic Models (HMM, Topic Models)

Linear Classifiers

Neural-Networks and Support Vector Machines

Feature Selection & Extraction

Anomaly Detection

Adversarial Learning
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Literature

Some figures are taken from Bishop’s new book (Pattern Recognition and
Machine Learning).
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Theoretical Limits of Virus Scanners

Can any virus be detected? What are the limits?

Identifying a mutating virus is NP-complete.
Reliable Identification of Bounded-length Viruses is NP-complete, Diomidis Spinellis,

IEEE Transactions on Information Theory, Vol. 49, No. 1 (2003), pp. 280-284.

Detecting viruses is undecidable.
Computer Viruses: Theory and Experiments, Fred Cohen, Computers & Security, 6

(1987), pp. 22-35.
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Computer Virus

Definition: A computer virus is a program that can infect other programs
by modifying them to include a possibly evolved copy of it self. [Fred Cohen,

Computer Viruses: Theory and Experiments, 1987]

program virus := 1234567;

{

subroutine infect-executable := {

loop:file = get-random-executable-file;

if first-line-of-file = 1234567 then goto loop:

prepend virus to file;

}

subroutine do-damage := {whatever damage is to be done}

subroutine trigger-pulled := {return true if some condition}

main-program := { infect-executable;

if trigger-pulled then do-damage;

goto next;

}

next: /* execute rest of the program it was prepended to. */

}
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Identifying a Virus is NP-complete

Idea:
Show that a virus detector D for a certain virus strain V can be used to
solve the satisfiability problem, which is known to be NP-complete.

The satisfiability of the problem which is examined is however not a
special case.

The virus V is a mutating self-replicating program.

Assume that the virus detector D can reliably determine in
polynomial time whether a given candidate program C is a mutation
of the virus V .

We will use the virus detector as an oracle for determining the
satisfiability of an N-term Boolean formula S .
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Link between SAT and Virus Instance

Use the satisfiability formula S to create a virus archetype A and a
possible instance of a virus phenotype P .
The virus is a triple

(f , s, c)

where

f is the virus processing and replication function,

s is a Boolean value indicating whether an instance of the virus has
found a solution to S ,

c is an integer encoding the candidate values for S .

The function f maps a triple (f , s, c) into a new triple (f , s ′, c ′) and is
defined as follows

λ(f , s, c).(f , s ∨ S , if c = 2N then c else c + 1).
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Link between SAT and Virus Instance (cont.)

Each term xn in S is calculated from c through the expression

⌊ c

2n

⌋
mod 2

?
= 1 which results in a Boolean value.

bit position c decimal value

2 1 0 n

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Is bit at position c = 2 set to 1
for decimal value n = 4? Result is
TRUE.

Is bit at position c = 0 set to 1
for decimal value n = 6? Result is
FALSE.
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Will a Virus Mutation ever Satisfy S

A new generation of the virus is generated by applying f to the current
generation.

1 evaluates S by extracting successive Boolean value combinations from
c ,

2 increments c until it reaches 2N ,

3 passes the result of the S evaluation to the next generation.

We can now ask virus detector D whether the virus archetype A

(f , FALSE, 0)

will ever result in a virus mutation phenotype P

(f , TRUE, 2N)

that is whether one of the virus mutations will satisfy S .
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Example

Consider the satisfiability of the formula

S = (x0 ∨ x1) ∧ x0.

The virus replication function f will be

λ(f , s, c).(f , s ∨ (x0 ∨ x1) ∧ x0, c + 1)

the corresponding archetype A

(λ(f , s, c).(f , s ∨ (x0 ∨ x1) ∧ x0, c + 1), F, 0),

where F denotes FALSE and T denotes TRUE.
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Example (cont.)

This particular virus will generate a mutation P and thereby indicate that
S is satisfiable in four generations through the following sequence

(λ(f , s, c).(f , s ∨ S , c + 1), F ∨ (F ∨ F) ∧ F, 0 + 1) →
(λ(f , s, c).(f , s ∨ S , c + 1), F, 1) →

(λ(f , s, c).(f , s ∨ S , c + 1), F ∨ (T ∨ F) ∧ T, 1 + 1) →
(λ(f , s, c).(f , s ∨ S , c + 1), F, 2) →

(λ(f , s, c).(f , s ∨ S , c + 1), F ∨ (F ∨ T) ∧ F, 2 + 1) →
(λ(f , s, c).(f , s ∨ S , c + 1), T, 3) →

(λ(f , s, c).(f , s ∨ S , c + 1), T ∨ (T ∨ T) ∧ T, 3 + 1) →
(λ(f , s, c).(f , s ∨ S , c + 1), T, 4) ≡ P .
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Summary

It was shown that a reliable virus
detector D operating in polyno-
mial time can be used as a poly-
nomial time satisfiable oracle and
hence, reliable detection of a mu-
tating virus is NP-complete
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Virus Detection is Undecidable

Virus detection is undecidable, that is, there is no program that detects all
viruses.

To proof this statement one has to show the undecidability of the language

VTM = {〈M, 〈P〉〉 |M is a TM and M detects whether P is a virus}.

Proof sketch:

Suppose that VTM is decidable and H is a decider for VTM.

H(〈M, 〈P〉〉) =
{

TRUE if M detects P as a virus
FALSE if M fails to detect P as a virus.

T.Stibor (TUM) Course IN2207 SS2011 14 / 256



Virus Detection is Undecidable (cont.)

On input 〈M, 〈P〉〉, where M is a TM and 〈P〉 a string which encodes
program P , H outputs TRUE if M detects P as a virus. In contrast, H
outputs FALSE if M fails to detect P as a virus.

Construct a new Turing machine D with H as a subroutine.

This new TM calls H to determine what M does when the input to
M is its own description 〈M〉.
Once D has determined this information, it does the opposite. That
is, it outputs FALSE if M outputs TRUE and it outputs TRUE if M
outputs FALSE. The following is a description of D.
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Virus Detection is Undecidable (cont.)

D = On input 〈M〉, where M is a TM:

1 Run H on input 〈M, 〈M〉〉.
2 Output the opposite of what H outputs; that is, if H outputs TRUE,

then output FALSE and if H outputs FALSE, then output TRUE.

More formally

D(〈M〉) =
{

TRUE if M fails to detect 〈M〉 as a virus
FALSE if M detects 〈M〉 as a virus.

What happens when we run D with its own description 〈D〉 as input?
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Virus Detection is Undecidable (cont.)

In that case we get

D(〈D〉) =
{

TRUE if D fails to detect 〈D〉 as a virus
FALSE if D detects 〈D〉 as a virus.

No matter what D does, it is forced to do the opposite and hence this
results in a contraction.

In summary

H outputs TRUE on input 〈M, 〈P〉〉 exactly when M detects P as a
virus.

D fails to detect 〈M〉 as a virus exactly when M detects 〈M〉 as a
virus.

D fails to detect 〈D〉 as a virus exactly when D detects 〈D〉 as a
virus. �
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Machine Learning for Information Security Problems

Spam detection: Text analysis, document clustering.

Intrusion detection: Anomaly detection, one-class learning.

Detection of malicious behavior of processes: Sequential data analysis
of system calls.

Credit card fraud detection: Time series analysis of transactions.

...

Machine learning methods can be applied for such kind of problems.

The goal of this course is to learn about the machine learning
methods.
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An Introductory Example
Suppose that a fishpacking factory wants to automate the process of
sorting incoming fish (salmon and sea bass).
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After some preprocessing, each fish is characterized by feature vector
x = (x1, x2) ∈ R

2 (pattern), where the first component is the lightness and
the second component the length.
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Pattern belongs to Class?

?
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Given labeled training data (x1, y1), . . . , (xN , yN) ∈ R
n × Y coming from

some unknown probability distribution P(x, y). In this example,
Y ∈ {salmon, sea bass} and n = 2. Unseen (unlabeled) pattern belongs to
class salmon or sea bass?

T.Stibor (TUM) Course IN2207 SS2011 20 / 256



A (too underfitted) Classifier
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This linear separation suggests the rule: Classify the fish as salmon if its
features falls below the decision boundary, otherwise as sea bass.
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A (too overfitted) Classifier
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A too complex model will lead to decision boundary that gives perfect
classification accuracy on trainig set (seen patterns), but poor
classification on unseen patterns.
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A Good Classifier
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Optimal tradeoff between performance on the training set and simplicity of
the model. This gives high classification accuracy on unseen patterns, i.e.
it gives good generalization.
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Probability Theory

Uncertainty is key concept in machine learning.

Probability provides consistent framework for the quantification and
manipulation of uncertainty.

Probability of an event is the fraction of times that event
occurs out of the total number of trials, in the limit that
the total number of trials goes to infinity.

Elementary rules of probability

Sum rule.

Product rule.
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Derive Sum and Product Rules

}

}ci

rjyj

xi

nij

Random variable X can take values {xi}, i = 1, 2, . . . ,M (M = 5), Y
can take values {yj}, j = 1, 2, . . . , L (L = 3).

Consider a total number N of instances of these variables, and denote
the number of instances where X = xi and Y = yi by nij (number of
points in the corresponding cell of the array).
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Derive Sum and Product Rules (cont.)

}

}ci

rjyj

xi

nij

Number of points in column i , corresponding to X = xi , is denoted by
ci .

Number of points in row j , corresponding to Y = yi , is denoted by rj .
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Joint Probability

Probability that X will take value xi and Y will take the value yj is written

p(X = xi ,Y = yi) =
nij
N

where we are implicitly considering the limit N →∞.
Put it the other way around:

Number of points falling in the cell i , j as a fraction of the total
number of points.

Probability that X takes the value xi irrespective of the value of Y is

p(X = xi) =
ci
N

Fraction of the total number of points that fall in column i .
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Sum Rule

Number of instances in column i is just the sum of the number of
instances in each cell of that column, we have ci =

∑
j nij and hence

p(X = xi ) =
ci
N

=

∑L
j=1 nij

N

=

L∑

j=1

p(X = xi ,Y = yj).

Sometimes also called marginal probability, because it is obtained by
marginalizing, or summing out, the other variables (here Y ).
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Product Rule

Now we are interested in finding the fraction of those points in column i
that fall in cell i , j , that is

p(Y = yj |X = xi) =
nij
ci
.

By means of this conditional probability, we can derive the following
relationship

p(X = xi ,Y = yj) =
nij
N

=
nij
ci
· ci
N

= p(Y = yj |X = xi)p(X = xi)

which is the product rule of probabilities.

T.Stibor (TUM) Course IN2207 SS2011 29 / 256



Illustrative Example

p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)
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Sum and Product Rule (Summary)

Rules of Probability

sum rule p(X ) =
∑

Y

p(X ,Y )

product rule p(X ,Y ) = p(Y |X )p(X )
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Bayes’ theorem

Using symmetry property p(X ,Y ) = p(Y ,X ) one can derive the following
relation between conditional probabilities

p(X ,Y ) = p(Y ,X )

p(Y |X )p(X ) = p(X |Y )p(Y )

p(Y |X ) =
p(X |Y )p(Y )

p(X )

where the denominator can be expressed by means of the sum rule as

p(X ) =
∑

Y

p(X ,Y ) =
∑

Y

p(Y ,X )

=
∑

Y

p(X |Y )p(Y )
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Bishop’s Bayes Example

The red box contains 6 oranges and 2 apples, the blue box contains 1 orange
and 3 apples. Suppose we pick the red box 40% of the time and the blue
box 60% of the time. Thanks to Bayes’ theorem we can answer questions
such as:

What is the overall probability that we pick an apple?

Given that we have chosen an orange, what is the probability that the
box we chose was the blue one?
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Bishop’s Bayes Example (cont.)

For the sake of clarity let’s introduce random variables B for box and F for
fruit. B can take one of the two possibilities B = r (for red) and B = b
(for blue); and F = o (for orange) and F = a (for apple).

The prior probability of selecting the red box is

p(B = r) =
4

10

and of selecting the blue box

p(B = b) =
6

10
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Bishop’s Bayes Example (cont.)

From given information we can write out all four conditional probabilities
of given the selected box and picking the type of fruit.

p(F = a|B = r) =
1

4

p(F = o|B = r) =
3

4

p(F = a|B = b) =
3

4

p(F = o|B = b) =
1

4
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Bishop’s Bayes Example (cont.)

Back to our question: What is the overall probability that we pick an
apple?

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1

4
· 4
10

+
3

4
· 6
10

=
11

20

from this it follows that p(F = o) = 1− 11
20 = 9

20 . Although there are
more oranges in total, picking an apple is more likely.

Back to our second question: Given that we have chosen an orange, what
is the probability that the box we chose was the blue one, that is
p(B = b|F = o)?
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Bishop’s Bayes Example (cont.)

p(B = b|F = o) =
p(F = o|B = b)p(B = b)

p(F = o)
=

1

4
· 6
10
· 20
9

=
1

3

and that we chose the red box:

p(B = r |F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3

4
· 4
10
· 20
9

=
2

3

p(B |F ) = p(F |B)p(B)

p(F )
, where p(F ) =

∑

B

p(F |B)p(B)
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Bayes’ theorem Bishop’s Example

Probability p(B) is the prior probability because it is the probability
before we observe the identify of the fruit.

After telling us the fruit is e.g. an orange, we can use Bayes’ theorem
to compute the probability p(B |F ) which is called the posterior
probability because it is the probability after we have observed F .

Bayes’ theorem in words

posterior ∝ likelihood× prior
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Independence of Random Variables

If random variables X and Y are independent, then joint distribution
factorizes into product of marginals, that is

p(X ,Y ) = p(X )p(Y ).

From product rule one can see

p(Y |X ) = p(Y ),

that is, the conditional distribution of Y given X is independent of
the value of X .
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Naive Bayes Classifier

Given feature variables F1,F2, . . . ,Fn and a class variable C . The Bayes’
theorem states

p(C |F1,F2, . . . ,Fn) =
p(C ) p(F1,F2, . . . ,Fn |C )

p(F1,F2, . . . ,Fn)
.

Assuming that each feature Fi is conditionally independent of every other
feature Fj for i 6= j one obtains

p(C |F1,F2, . . . ,Fn) =
p(C )

∏n
i=1 p(Fi |C )

p(F1,F2, . . . ,Fn)
.

The denominator serves as a scaling factor and can be omitted in the final
classification rule

argmax
c

p(C = c)

n∏

i=1

p(Fi = fi |C = c).
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Naive Bayes Classifier Example

Dataset taken from Tom Mitchell’s book: Machine Learning

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Naive Bayes Classifier Example (cont.)

Should we play tennis when given the following information (features
F1,F2,F3,F4)

(F1 = sunny,F2 = cool,F3 = high,F4 = strong)

We want to compute

argmax
c

p(C = c)

n∏

i=1

p(Fi = fi |C = c).

Let’s do it p(C = Yes)p(F1 = sunny|C = Yes)p(F2 = cool|C = Yes)

p(F3 = high|C = Yes)p(F4 = strong|C = Yes) = 0.005

p(C = No)p(F1 = sunny|C = No)p(F2 = cool|C = No)

p(F3 = high|C = No)p(F4 = strong|C = No) = 0.021

Hence, we better play not tennis.
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Probability Densities

We considered probabilities defined over discrete sets of events.

Consider now probabilities with respect to continuous variables.

If the probability of a real-valued variable x falling in the interval
(x , x + δx) is given by p(x)δx for δx → 0, then p(x) is called the
probability density over x .

The probability that x will lie in an interval (a, b) is given by

p(x ∈ (a, b)) =

∫ b

a

p(x)dx .
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Probability Densities (cont.)

Probability density p(x) must satisfy the two conditions

p(x) ≥ 0∫ ∞

−∞
p(x)dx = 1

xδx

p(x)
P (x)

Probability density can be ex-
pressed as the derivative of a
cumulative distribution function
P(x).
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Multivariate Probability Densities

Having a vector x = (x1, x2, . . . , xD) of continuous variables, we can
define the joint probability density p(x).

Multivariate probability density must satisfy

p(x) ≥ 0∫ ∞

−∞
p(x)dx = 1

Sum and product rule, as well as Bayes’ theorem apply equally. If x
and y are two real variables, then

p(x) =

∫
p(x , y)dy

p(x , y) = p(y |x)p(x).
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Expectations

Average value of some function f (x) under a probability distribution
p(x) is called the expectation of f (x), denoted as E[f ].

For discrete distribution it is

E[f ] =
∑

x

p(x)f (x).

Average is weighted by the relative probabilities of the different values of x .

Continues variables are expressed in terms of an integration w.r.t.
probability density

E[f ] =

∫
p(x)f (x)dx .

T.Stibor (TUM) Course IN2207 SS2011 46 / 256



Expectations (cont.)

Given a finite number N of points drawn from a probability distribution or
probability density, the expectation can be approximated as

E(f ) ≈ 1

N

N∑

n=1

f (xn).

Subscript indicates which variable is being averaged over

Ex [f (x , y)] =
∑

x

p(x , y)f (x , y).

Conditional expectation w.r.t. a conditional distribution

Ex [f | y ] =
∑

x

p(x | y)f (x).
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Properties of Expectations

If c is a constant, then E[c] = c .

E[ax ] = aE[x ].

E[x + y ] = E[x ] + E[y ].

E[x + c] = E[x ] + c .
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Variance and Covariance

Variance of f (x) is defined as

var[f ] = E
[
(f (x)− E[f (x)])2

]

and provides a measure of how much variability there is in f (x) around its
mean value E[f (x)]. Variance can also be written in terms of the
expectations of f (x) and f (x)2

var[f ] = E[f (x)2]− E[f (x)]2.

The variance of variable x itself is given by

var[x ] = E[x2]− E[x ]2.
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Variance and Covariance (cont.)

For two random variables x and y , the covariance is defined as

cov[x , y ] = Ex ,y [{x − E[x ]}{y − E[y ]}]
= Ex ,y [xy ]− E[x ]E[y ].
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Expectation, Variance and Covariance Example

p(X,Y )

X

Y = 2

Y = 1

1 4 5 8 6 2

3 6 8 8 5 3 1

total 26

total 34

total 60

X=1 X=2 X=3 X=9

E[x ] = p(X = 1) 1 + p(X = 2) 2 + . . .+ p(X = 9) 9

=
3

60
1 +

6

60
2 + . . .+

2

60
9 = 4.95

E[y ] = p(Y = 1) 1 + p(Y = 2) 2

=
34

60
1 +

26

60
2 = 1.4333
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Expectation, Variance and Covariance Example (cont.)

var[x ] = E
[
(x − E[x ])2

]

=
3

60
(1− 4.95)2 +

6

60
(2− 4.95)2 +

8

60
(3− 4.95)2 +

. . . + (9− 4.95)2
2

60
= 4.5475

var[x ] = E[x2]− E[x ]2

= 12
3

60
+ 22

6

60
+ 32

8

60
+

. . .+ 82
6

60
+ 92

2

60
− 4.952 = 4.5475
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Binary Variables & Bernoulli Distribution

Consider single binary random variable x ∈ {0, 1}, e.g. x might describe
outcome of flipping a coin, with x = 1 representing ’heads’, and x = 0
representing ’tails’.

Probability of x = 1

p(x = 1 |µ) = µ where 0 ≤ µ ≤ 1.

Probability of x = 0
p(x = 0 |µ) = 1− µ.

Probability distribution over x is

Bern(x |µ) = µx (1− µ)1−x (Bernoulli distribution).

Distribution is normalized and has mean E[x ] = µ and variance
var[x ] = µ (1− µ).
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Bernoulli Distribution & Maximum Likelihood
Given a dataset D = {x1, x2, . . . , xN} of observed values of x . Assume
that observations are drawn independently from p(x |µ), so that

p(D |µ) =
N∏

n=1

p(xn |µ) =
N∏

n=1

µxn (1− µ)1−xn .

Suppose we observe dataset D = {0, 1, 1, 0, 1, 0, 1, 1, 1, 0} and want to
maximize p(D |µ), that is, find a parameter µ such that p(D |µ) is
maximal.
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0
.0
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2

µ

p
(D

|
µ
) Observe that for µ = 0.6 =

∑N
n=1 1{xn=1}
|D| the value of p(D |µ)

is maximal.
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Bernoulli Distribution & Maximum Likelihood (cont.)

Analytically we can set the derivative of ln p(D |µ) with respect to µ to
zero.

ln p(D |µ) =
N∑

n=1

ln p(xn |µ) =
N∑

n=1

{xn lnµ+ (1− xn) ln(1− µ)}.

∂ ln p(D |µ)
∂µ

= 0 ⇒ µML =
1

N

N∑

n=1

xn.

The maximum likelihood estimator µML is also known as sample mean and
is the fraction of observations of heads in the data set D, that is,

µML =

∑N
n=1 1{xn = 1}
|D| .
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Binomial Distribution

Suppose we toss a coin N times and are interested in the probability of
obtaining m heads.

Bin(m |N, µ) =

(
N
m

)
µm(1− µ)N−m.

For each observation the mean and variance are given by

E[m] ≡
N∑

m=0

mBin(m |N, µ) = N µ (sum of means)

var[m] ≡
N∑

m=0

(m−E[m])2 Bin(m |N, µ) = N µ (1−µ) (sum of variances).
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Binomial Distribution Example

Suppose N = 3, µ = 1/2 and m = 2, that is, we toss a fair coin three
times and are interested in the probability of obtaining two times head.

The event space is Ω = {H,T}3 and the events of interests are
E = {{H,H,T}, {H,T ,H}, {T ,H ,H}}. Observe that

(
3
2

)
= |E|

and the probability of tossing two heads in three trials

3 (1/2)2 (1− 1/2)1 =

(
3
2

)
(1/2)2 (1− 1/2)1.
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Multinomial Distribution
So far we have considered random variables that can take two possible
values (e.g. head or tail). The multinomial distribution encounters discrete
variables that can take on one of K possible mutually exclusive states.

Denote N the total number of observations, µ parameter vector with
0 ≤ µk ≤ 1 and

∑K
k=1 µk = 1. The multinomial distribution has the form

Mult(m1,m2, . . . ,mK |µ,N) =

(
N

m1m2 . . .mK

) K∏

k=1

µmk

k ,

where mk denotes the number of times outcome number k was observed
over the N observations (trials) and

(
N

m1m2 . . .mK

)
=

N!

m1!m2! . . .mK !

(number of ways of partitioning N objects into K groups of size
m1,m2, . . . ,mK ).
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Multinomial Distribution (Example)

Given an urn with 10 marbles, 2 red, 3 green and 5 blue (K = 3). We
select randomly N = 4 from the urn with replacement. What is the
probability of selecting m1 = 0 red, m2 = 2 green and m3 = 2 blue
marbles.

p(red) = 2/10, p(green) = 3/10, p(blue) = 5/10.

Mult(m1 = 0,m2 = 2,m3 = 2 |µ1 = 2/10, µ2 = 3/10, µ3 = 5/10,N = 4)

=
4!

0! 2! 2!
(0.2)0 (0.3)2 (0.5)2 = 0.135,

where m1 +m2 +m3 = N = 4.
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Gaussian Distribution

For a single real-valued variable x , the Gaussian distribution is defined by

N (x |µ, σ) = 1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}

where µ is the mean and σ2 the variance (square root of σ2 is called
standard deviation).
Gaussian distribution satisfies

N (x |µ, σ) ≥ 0

∫ ∞

−∞
N (x |µ, σ) dx = 1

and therefore satisfies the two requirements for a valid probability density.
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Gaussian Distribution (cont.)

N (x|µ, σ2)

x

2σ

µ
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Multivariate Gaussian Distribution
Gaussian distribution defined over D-dimensional vector x of continuous
variables is given by

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2 exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}

µ =

[
0
0

]
Σ =

[
1 0
0 1

]

-3
-2

-1
 0

 1
 2

 3-3
-2

-1
 0

 1
 2

 3

 0

 0.05

 0.1

 0.15

 0.2 µ is a D-dim. mean
vector.

Σ is a D × D covariance
matrix, |Σ| denotes the
determinant of Σ.
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Gaussian Distribution & Maximum Likelihood

Given data set X = {x1, x2, . . . , xN} of observations.
Suppose that observations are drawn independently from a Gaussian
distribution whose mean µ and variance σ2 are unknown.

Goal: infer these parameters from the data set.

Data X is independent and identically distributed, hence likelihood of the
data, given µ and σ2 is

p(X |µ, σ2) =

N∏

n=1

N (xn |µ, σ2).

Log likelihood of p(X |µ, σ2)

ln p(X |µ, σ2) = − 1

2σ2

N∑

n=1

(xn − µ)2 − N

2
lnσ2 − N

2
ln(2π)
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Gaussian Distribution & Maximum Likelihood (cont.)
Maximizing ln p(X |µ, σ2), that is

∂

∂µ
ln p(X |µ, σ2) = 0

gives solution

µML =
1

N

N∑

n=1

xn sample mean

and analog

∂

∂σ
ln p(X |µ, σ2) = 0

gives sample variance

σ2
ML =

1

N

N∑

n=1

(xn − µML)
2
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Properties of Gaussian Distribution

Expectation of x ∈ R
D is

E[x] =
1

(2π)D/2

1

|Σ|1/2
∫

exp

{
−1

2
(x− µ)TΣ−1(x− µ))

}
x dx

= µ

and covariance

cov[x] = E[(x− E[x])(x − E[x])T ]

cov[x] = E[(x− µ)(x − µ)T ]

= Σ.

Covariance matrix Σ is always symmetric and positive semidefinite.
Elements σii are variances of xi , elements σij are covariances of xi and xj .
If xi and xj are statistically independent, then σij = 0.
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Two-dim. Gaussian Distribution

p(x) =
1

(2π)D/2|Σ|1/2 exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}

µ =

[
0
0

]
Σ =

[
1 0
0 1

]

-3
-2

-1
 0

 1
 2

 3-3
-2

-1
 0

 1
 2

 3

 0

 0.05

 0.1

 0.15

 0.2
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Two-dim. Gaussian Distribution
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Two-dim. Gaussian Distribution (cont.)
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Covariance Matrix

Covariance matrix Σ is symmetric and positive definite. Example:

[
1 0
0 1

]
= Σ = ΣT .

x , y ∈ R, [x y ]

[
1 0
0 1

] [
x
y

]
= [x y ]

[
x
y

]
= x2+y2 ≥ 0, for all x , y ∈ R.

x <- y <- seq (-1, 1, len =100);

r <- sqrt(outer (x^2, y^2, "+"));

contour (r, drawlabels = TRUE ,

levels = seq (0, 0.8, by=0.1) ,

lwd = 2, ylab = "y",

xlab = "x", cex = 2);

x
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Covariance Matrix

Eigenvector and eigenvalue of covariance matrix Σ ∈ R
D×D

Σud = λdud , d = 1, 2, . . . ,D.

Covariance matrix can be expressed as an expansion in terms of its
eigenvectors in the form

Σ =

D∑

d=1

λdudu
T
d

and the inverse matrix

Σ−1 =
D∑

d=1

1

λd

udu
T
d .
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Covariance Matrix and Eigenvectors (Example)

Σ =

[
1 0
0 1

]
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Linear Combinations of Gaussian Distributions
Suppose p(x) ∼ N(µ,Σ), and A is d -by-k matrix and y = ATx is a
k-component vector, then

p(y) ∼ N(ATµ,ATΣA).

When k = 1 and A is a unit-length
vector a, y = aTx is a scalar that
represents the projection of x onto
a line in the direction of a, where
aTΣa is the variance of the pro-
jection of x onto a.
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Mahalanobis Distance
Quantity

r2 = (x− µ)TΣ−1(x− µ)

is called the squared Mahalanobis Distance from x to µ. If Σ = I, then r2

is the squared Euclidean distance. Any points lying on the same contour
line have equal distance to µ.
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x1

x 2

[x1 x2]

[
1 1/2
1/2 1

] [
x1
x2

]
=

x1(x1+1/2 x2)+x2(1/2 x1+x2) =

x21 + x1x2 + x22 .
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Bayesian Decision Theory

How to make an optimal decision given the appropriate probabilities?

Minimize the error of assigning x to the wrong class.

Intuitively we would choose the class having the higher posterior
probability.

An error occurs when x belonging to class C1 is assigned to class C2 or vice
versa. The probability of this occuring is given by:

p(error) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=

∫

R1

p(x, C2)dx+
∫

R2

p(x, C1)dx
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Error Probabilities in Bay. Decision Theory

R1 R2

x

p(x|Ci ) p(Ci )

∫
R1

p(x|C2) p(C2)dx
∫
R2

p(x|C1) p(C1)dx
C1

C2

Probability(x falls in R1 and has true nature C2)

Probability(x falls in R2 and has true nature C1)
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Error Probabilities in Bay. Decision Theory

R1 R2

x

p(x|Ci ) p(Ci )

∫
R1

p(x|C2) p(C2)dx
∫
R2

p(x|C1) p(C1)dx
C1

C2

Probability(x falls in R1 and has true nature C2)

Probability(x falls in R2 and has true nature C1)
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Error Probabilities in Bay. Decision Theory
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x

p(x|Ci ) p(Ci )

∫
R1

p(x|C2) p(C2)dx
∫
R2

p(x|C1) p(C1)dx
C1

C2

Probability(x falls in R1 and has true nature C2)

Probability(x falls in R2 and has true nature C1)

reducible error
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Bayesian Estimation (Class-Conditional Densities)

In Bayesian parameter estimation, the parameter is not fixed as in ML, but
is a random variable. The training data is used to convert a distribution on
this variable into a posterior density.

Let D denote a training sample, our goal is to compute the posterior
p(Ci | x ,D).

Bayes formula:

p(Ci | x ,D) =
p(x |Ci ,D)p(Ci | D)∑I
i=1 p(x |Ci ,D)p(Ci | D)

.

Training sample D can be used to help us determining the
class-conditional and prior density.

To simplify, we assume that prior probabilities are known or obtainable
from some calculations, thus we substitute P(Ci) = P(Ci | D).
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Bayesian Estimation (Class-Conditional Densities) cont.

Consider supervised case: Separate training data by class into c subsets
D1,D2, . . . ,DI with sample in Di belonging to class Ci . This assumption
allows us to write the previous equation as

p(Ci | x ,D) =
p(x |Ci ,D)p(Ci )∑I
i=1 p(x |Ci ,D)p(Ci )

.

We have now I separate problems of the following form: Use a set of D of
samples drawn independently according to a fixed but unknown probability
distribution p(x) to determine p(x |D).
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Bayesian Parameter Estimation

Desired density p(x) is unknown, we however assume that it has a
known parametric form. Unknown is just the value of the parameter
vector Θ. That is p(x |Θ) is known.

Any information we have about Θ prior to observing the sample is
contained in prior density p(Θ).

Observation of the sample D converts this to a posterior density p(Θ | D),
which is close (sharply peaked) about the true value of Θ.

Note that we have converted our problem if learning a probability density
function to one of estimating a parameter vector.

Recall that our goal is to compute p(x | D), which is as close as we can
come to obtain the unknown density p(x).
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Bayesian Parameter Estimation (cont.)

We obtain p(x | D) by integrating the joint density p(x ,Θ | D) over Θ:

p(x | D) =

∫
p(x ,Θ | D) dΘ,

=

∫
p(x |Θ,D)p(Θ | D) dΘ

If p(Θ | D) peaks very sharply about some value Θ̂, we obtain
p(x | D) ≈ p(x |Θ).
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Bayesian Parameter Estimation (µ)

Calculate the posterior density p(Θ|D) and the desired density p(x |D) for
the case where p(x |µ) ∼ N(µ, σ2), where the only unknown quantity is
Θ ≡ µ.

Whatever prior knowledge we might have about µ can be expressed by a
known prior density p(µ), where me make the assumption that

p(µ) ∼ N(µ0, σ
2
0), where both µ0 and σ0 are known.

Intuitively, µ0 represents our best prior guess for µ, and σ2
0 measures our

uncertainty about this guess.
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Bayesian Parameter Estimation (µ cont.)

Let D = {x1, x2, . . . , xN}.

p(µ|D) =
p(D|µ)p(µ)∫
p(D|µ)p(µ) dµ =

p(D|µ)p(µ)
p(D)

= α
N∏

n=1

p(xn|µ)p(µ),

where α is a normalization factor that depends on D but is independent of
µ. Because p(xk |µ) ∼ N(µ, σ2) and p(µ) ∼ N(µ0, σ

2
0) we obtain

p(µ|D) = α

N∏

n=1

p(xn|µ)︷ ︸︸ ︷
1√
2πσ

exp

[
−1

2

(
xn − µ

σ

)2
]

1√
2πσ0

exp

p(µ)︷ ︸︸ ︷[
−1

2

(
µ− µ0

σ0

)2
]
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Bayesian Parameter Estimation (µ cont.)

Additional manipulations give

p(µ|D) = α
′

exp

[
−1

2

(
N∑

n=1

(
µ− xn

σ

)2

+

(
µ− µ0

σ0

)2
)]

= α
′′

exp

[
−1

2

[(
N

σ2
+

1

σ2
0

)
µ2 − 2

(
1

σ2

N∑

n=1

xn +
µ0

σ2
0

)
µ

]]
(1)

If we write p(µ|D) ∼ N(µN , σ
2
N), then µN and σ2

N can be found by
equating coefficients in (1) with corresponding coefficients in the generic
Gaussian of the form

p(µ|D) = 1√
2πσN

exp

[
−1

2

(
µ− µN

σN

)2
]
.
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Bayesian Parameter Estimation (µ cont.)

Solving for µN and σ2
N gives

µN =

(
Nσ2

0

Nσ2
0 + σ2

)
µ̂N +

σ2

Nσ2
0 + σ2

µ0, where µ̂N =
1

N

N∑

n=1

xn

and

σ2
N =

σ2
0σ

2

Nσ2
0 + σ2

.

Intuitively, µN represents our best guess for µ after observing a sample of
size N, and σ2

N measures the uncertainty about this guess. Note that σ2
N

decreases monotonically with N →∞, that is, each additional observation
decreases our uncertainty about the true nature of µ. As N increases,
p(x |D) becomes more and more sharply peaked.
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Bayesian Parameter Estimation (Example)
We want to apply Bayesian parameter estimation (inference) for parameter
µ when given a sample D = {x1, x2, . . . , xN} where xn ∼ N(0.8, 0.1) and
N = 10. The prior is p(µ) ∼ N(0, 1).
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History of Neural Networks

1943 Model of McCulloch and Pitts

1962/
1960

Adaline (Widrow and Hoff), Perceptron (Rosenblatt)

1969 Book: Perceptrons (Minsky and Papert)

Decline of neural network research

1982 Hopfield Network, (Hopfield), Recurrent Networks, Energy Function

1986/
1985

Backpropagation (Rumelhart, Hinton, Williams, Le Cun (actually first proposed by Werbos, 1974))

Era of Neural Networks

1992 A Training Algorithm for Optimal Margin Classifiers (Boser, Guyon and Vapnik), first paper on SVM

1995 Support-Vector Networks (Cortes and Vapnik)

Era of Kernel Methods (SVM, Kernel-PCA, Kernel-Fisher Discriminants, etc.)

Neural Networks are however still and frequently used

Note, this historical overview is far from being complete (see books for
detailed historical overview)
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Method of Steepest Descent

Let E (w) be a continuously differentiable function of some unknown
(weight) vector w.

Find an optimal solution w⋆ that satisfies the condition

E (w⋆) ≤ E (w).

The necessary condition for optimality is

∇E (w⋆) = 0.

Let us consider the following iterative descent:

Start with an initial guess w(0) and generate sequence of weight vectors
w(1),w(2), . . . such that

E (w(i+1)) ≤ E (w(i)).
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Steepest Descent Algorithm

w(i+1) = w(i) − η∇E (w(i))

where η is a positive constant called learning rate.

At each iteration step the algorithm applies the correction

∆w(i) = w(i+1) −w(i)

= −η∇E (w(i))

Steepest descent algorithm satisfies:

E (w(i+1)) ≤ E (w(i)),

to see this, use first-order Taylor expansion around w(i) to approximate
E (w(i+1)) as E (w(i)) + (∇E (w(i)))T∆w(i).
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Steepest Descent Algorithm (cont.)

E (w(i+1)) ≈ E (w(i)) + (∇E (w(i)))T∆w(i)

= E (w(i))− η‖∇E (w(i))‖2

For positive learning rate η,E (w(i)) decreases in each iteration step (for
small enough learning rates).
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Steepest Descent Algorithm Example
Black points denote different starting values. Learning rate η is properly
chosen, however for starting value (1, 1), algorithm converges not to the
global minimum. It follows steepest descent in the “wrong direction”, in
other words, gradient based algorithms are local search algorithms.
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Steepest Descent Algorithm Example (cont.)
Learning rate η = 1.0 is too large, algorithm oscillates in a “zig-zag”
manner or “overleap” the global minimum.
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Steepest Descent Algorithm Example (cont.)
Learning rate η = 0.005 is too small, algorithm converges “very slowly”.
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z = (3x
1

2
+ x2)exp(− x

1

2
− x

2

2)

η = 0.005
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Single-Layer Network

x0 = 1 x1 xd

w0 w1 wd

y

bias

output

inputs

Equivalent notation:

y(x) = w̃T x̃ =
d∑

i=0

wixi

where w̃ = (w0,w) and x̃ = (1, x).
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Linear Classifier

Linear classifiers are single layer neural networks.

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4 x2 = 2x1

x1

x2

b

b

b

Observe, that x2 = 2x1 can also be
expressed as

w1x1 + w2x2 = 0⇔ x2 = −
w1

w2
x1,

where for instance

w1 = −2, w2 = 1.

Furthermore, observe that all points lying on the line x2 = 2x1 satisfy
w1x1 + w2x2 = −2x1 + 1x2 = 0.
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Linear Classifier & Dot Product

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4 −2x1 + 1x2 = 0

x1

x2

w
b x = (1, 2)

What about the vector
w = (w1,w2) = (−2, 1)?
Vector w is perpendicular to
the line −2x1 + 1x2 = 0.

Let us calculate the dot
product of w and x.

The dot product is defined as w1x1 + w2x2 + . . . + wdxd
def
= 〈w, x〉, for

some d ∈ N.

In our example d = 2 and we obtain −2 · 1 + 1 · 2 = 0.
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Linear Classifier & Dot Product (cont.)
Let us consider the weight vector w = (3, 0) and vector x = (2, 2).

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

3x1 + 0x2 = 0

x1

x2

w

b x = (2, 2)

〈w,x〉
‖w‖ = 3·2+0·2√

32
= 2

Geometric interpretation of the dot product: Length of the projection of x
onto the unit vector w/‖w‖.

T.Stibor (TUM) Course IN2207 SS2011 97 / 256



Linear Classifier & Two Half-Spaces

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

{x| − 2x1 + 1x2 = 0}

{x| − 2x1 + 1x2 < 0}

{x| − 2x1 + 1x2 > 0}

x1

x2

w
b

b
b

b

b

The x-space is separated in two half-spaces.
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Linear Classifier & Dot Product (cont.)

Observe, that w1x1 + w2x2 = 0 implies, that the separating line
always goes through the origin.

By adding an offset (bias), that is
w0 + w1x1 + w2x2 = 0⇔ x2 = −w1

w2
x1 − w0

w2
≡ y = mx + b, one can

shift the line arbitrary.

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

x1

x2

w0 + w1x1 + w2x2 = 0

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

x1

x2

w0 + w1x1 + w2x2 > threshold
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Linear Classifier & Single Layer NN

x0 x1 xd

x1

w0 w1 wd

b b b b b

Input

Output y(x)

⇔

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

x1

x2

Note that x0 = 1, y(x) = 〈w, x〉+ w0.

Given data which we want to separate, that is, a sample
X = {(x1, t1), (x2, t2), . . . , (xN , tN)} ∈ R

d × {−1,+1}.
How to determine the proper values of w such that the “minus” and
“plus” points are separated by y(x)? Infer the values of w from the data
by some learning algorithm.
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Perceptron

Note, so far we have not seen a method for finding the weight vector w to
obtain a linearly separation of the training set.

Let g(a) be (sign) activation function

g(a) =

{
−1 if a < 0
+1 if a ≥ 0

and decision function

g(〈w, x〉) = g

(
d∑

i=0

wixi

)
.

Note: x0 is set to +1, that is, x = (1, x1, . . . , xd ). Training pattern
consists of (x, t) ∈ R

d+1 × {−1,+1}
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Perceptron Learning Algorithm

input : (x1, t1), . . . , (xN , tN) ∈ R
d+1 ×{−1,+1}, η ∈ R+,max.epoch ∈ N

output: w
begin

Randomly initialize w
epoch← 0
repeat

for i ← 1 to N do
if ti〈w, xi 〉 ≤ 0 then

w← w + ηxi ti

epoch← epoch + 1
until (epoch = max.epoch) or (no change in w)
return w

end
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Training the Perceptron (cont.)
Geometrical explanation: If x belongs to {+1} and 〈w, x〉 < 0⇒ angle
between x and w is greater than 90◦, rotate w in direction of x to bring
missclassified x into the positive half space defined by w. Same idea if x
belongs to {−1} and 〈w, x〉 ≥ 0.

+1 positive halfspace

−1 negative halfspace

x

w

+1 positive halfspace

−1 negative halfspace

x

wwnew
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Perceptron Error Reduction

Recall: missclassifcation results in:

wnew = w + ηx t,

this reduces the error since

−wnew(x t)T = −w(x t)T − η︸︷︷︸
>0

(x t)(x t)T︸ ︷︷ ︸
‖xt‖2>0

< −wTxt

How often one has to cycle through the patterns in the training set?

A finite number of steps?
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Perceptron Convergence Theorem

Proposition

Given a finite and linearly separable training set. The perceptron converges
after some finite steps [Rosenblatt, 1962].

T.Stibor (TUM) Course IN2207 SS2011 105 / 256



Perceptron Algorithm (R-code)

###################################################

perceptron <- function(w,X,t,eta,max.epoch) {

###################################################

N <- nrow(X)/2;

epoch <- 0;

repeat {

w.old <- w;

for (i in 1:(2*N)) {

if ( t[i]*y(X[i,],w) <= 0 )

w <- w + eta * t[i] * X[i,];

}

epoch <- epoch + 1;

if ( identical(w.old,w) || epoch = max.epoch ) {

break; # terminate if no change in weights or max.epoch

}

}

return (w);
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Perceptron Algorithm Visualization
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One epoch terminate if no change in w
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Perceptron Algorithm Visualization

−4 −2 0 2 4 6

−
4

−
2

0
2

4
6

X[, 2:3][,1]

X
[,
 2

:3
][
,2

]

−4 −2 0 2 4 6

−
4

−
2

0
2

4
6

X[, 2:3][,1]

X
[,
 2

:3
][
,2

]

One epoch terminate if no change in w
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Least Mean Square

Let us consider the weight correction in terms of an error function
E (i) = 1

2( y (i)︸︷︷︸
g(wT x)

−t(i))2, where g(·) is a differentiable function. Apply

gradient descent rule

w(i+1) = w(i) − η
∂E (i)

∂w
, where

∂E (i)

∂w
= (y (i) − t(i))︸ ︷︷ ︸

δ(i)

x(i)

gives change in weights

∆w = −ηδ(i)x(i) = −η∂E
(i)

∂w

Delta rule ≡ {Adaline rule, Widrow-Hoff rule, Least Mean Square (LMS) }
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Least Mean Square

Note, if we choose g(a) = a to be the linear activation function wTx, then
there exists a closed analytical solution (pseudo-inverse solution).

Let g(a) be a differentiable non-linear activation function, where a = wTx.

∂E (i)

∂w
= δ(i)x(i), where δ(i) = g ′(a)(y (i) − t(i))

gives change in weights

∆w = −ηδ(i)x(i) = −η∂E
(i)

∂w
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LMS Online/Batch Learning

Online learning:

Update weight w(i+1) = w(i) − η ∂E (i)

∂w (pattern by pattern).

This type of online learning is also called stochastic gradient descent, it is
an approximation of the true gradient.

Batch learning:

Update weight w(i+1) = w(i) − η
∑N

i=1
∂E (i)

∂w by computing derivatives
for each pattern separately and then sum over all patterns.
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Minimum Squared Error and Pseudoinverse

Recall that we want to minimize the squared error

E (w) =
N∑

i=1

1

2

(
y (i) − t(i)

)2
where y (i) = wTx(i)

Let X be the N × d̃ matrix where d̃ = d + 1 and ith row denotes training
pattern x(i)T , w is weight vector, t class label vector.




x10 x11 · · · x1d
x20 x21 · · · x2d
...

...
...

...
...

...
xN0 xN1 · · · xNd







w0

w1
...
wd


 =




t0
t1
...
...
tN




Xw = t
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MSE and Pseudoinverse (cont.)

Problem: find weight vector w, that is, solve Xw = t.

If X is non-singular solve w = X−1t, however, if X is rectangular (which is
usually the case), then there are more equations than unknowns, that is,
the equation system is overdetermined.

Let us search for w that minimizes the error

e = Xw − t

one approach is to minimize the squared length of the error vector e

J(w̃) = ‖Xw − t‖2 =
N∑

i=1

(
wTx(i) − t(i)

)2
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MSE and Pseudoinverse (cont.)

Forming the gradient

∇J =

N∑

i=1

2
(
wTx(i) − t(i)

)
x(i) = 2XT (Xw − t)

and setting ∇J to zero gives XTXw = XT t. Observe that XTX is a d̃ × d̃
matrix which often is non-singular. In the non-singular case, one can solve
w uniquely as

w =
(
XTX

)−1
XT t

= X†t

The d̃ × N matrix X† ≡
(
XTX

)−1
XT is called pseudoinverse of X.
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Linear Separability

Decision boundaries of single-layer networks are linear (hyperplanar in
higher dimensions).

Very restricted class of decision boundaries

Examples:
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C1

C1 C2

C2

x1

x2

XOR-Problem Points are not linearly separable
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Probability for Linear Separability

Probability that a random set of points will be linearly separable

Suppose we have N points distributed at random in d dimensions in
general position (not collinear)

Randomly assign each of the points to one of the two classes C1 and
C2 (with eq. probability)

For N data points there are 2N possible class assignments
(dichotomies ≡ binary partitions)

Question: What fraction F (N, d) of these dichotomies is linearly
separable?
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Probability for Linear Separability (cont.)

F (N, d) =

{
1 when N ≤ d + 1

1
2N−1

∑d
i=0

(
N−1
i

)
when N ≥ d + 1

5

d = 1

5
20

N/(d + 1)
1 2 3 4

1.0

0.8

0.6

0.4

0.2

If number of points is ≤ d + 1, then any labeling leads to a separable
problem.
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Activation functions

Discrimination functions of the form y(x) = wTx+ w0 are simple linear
functions of the input variables x, where distances are measured by means
of the dot product.

Let us consider the non-linear logistic sigmoid activation function g(·) for
limiting the output to (0, 1), that is,

y(x) = g(wT x+ w0),

where

g(a) =
1

1 + exp(−a) 0-2-4

1

0.8

0.6

4

0.4

0.2

2

0

a

Single-layer network with a logistic sigmoid activation function can also
output posterior probabilities (rather than geometric distances).
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Activation functions (cont.)

Heaviside step function:

g(a) =

{
0 if a < 0
1 if a ≥ 0

0-2 2 4-4

1

0.8

0.6

0.4

0.2

0

a

Hyperbolic tangent function:

g(a) = tanh(a) =
exp(a)− exp(−a)
exp(a) + exp(−a)

Note, tanh(a) ∈ (−1, 1)

1

0 2

0.5

0

-0.5

-1

-4 -2 4

a
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Multi-Layer vs. Single-Layer Networks

Single-layer networks

based on a linear combination of the input variables which is
transformed by linear/non-linear activation function

are limited in terms of the range of functions they can represent

Multi-layer networks

consist of multiple layers and are capable of approximating any
continuous functional mapping

are compared to single-layer networks not so straightforward to train
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Multi-Layer Network

x0 = 1 x1 xd

z0 = 1
z1 zM

first layer, (weights wji)

second layer, (weights vkj)

y1 yK

bias

bias

outputs

inputs

hidden units

Connection in first layer from input unit i to hidden unit j is denoted as wji .
Connection from hidden unit j to output unit k is denoted as vkj .
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Multi-Layer Network (cont.)

Hidden unit j receives input

aj =

d∑

i=1

wjixi + wj0 =

d∑

i=0

wjixi

and produces output

zj = g(aj ) = g

(
d∑

i=0

wjixi

)
.

Output unit k thus receives

ak =
M∑

j=1

vkjzj + vk0 =
M∑

j=0

vkjzj
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Multi-Layer Network (cont.)

and produces the final output

yk = g(ak) = g




M∑

j=0

vkjzj


 = g




M∑

j=0

vkj g

(
d∑

i=0

wjixi

)


Note that the activation function g(·) in the first layer can be different
from those in the second layer (or other layers).
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Multi-Layer Networks Example

bias

bias

x0 = 1 x1 x2

y1 y2

z0 = 1
z1 z2 z3

w10 w20

w30
w12

w22 w32

v10 v20
v13 v23

Note: sometimes the layers of units are counted (here three layers), rather
the layers of adaptive weights. In this course L-layer network is referred to
a network with L layers of adaptive weights.
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LMS Learning Rule for Multi-Layer Networks

We have seen that the LMS learning rule is based on the gradient
descent algorithm.

The LMS learning rule worked because the error is proportional to the
square difference between actual output y and target output t and
can be evaluated for each output unit.

In a multi-layer network we can use LMS learning rule on the
hidden-to-output layer weights because target outputs are known.

Problem: we cannot compute the target outputs of the input-to-hidden
weights because these values are unknown, or, to put it the other way
around, how to update the weights in the first layer?
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Backpropagation (Hidden-to-Output Layer)

Recall that we want to minimize the error on training patterns between
actual output yk and target output tk :

E =
1

2

K∑

k=1

(yk − tk)
2.

Backpropagation learning rule is based on gradient descent:

∆w = −η ∂E
∂w

, component form ∆wst = −η
∂E

∂wst

Apply chain rule for differentiation:

∂E

∂vkj
=

∂E

∂ak

∂ak
∂vkj
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Backprop. (Hidden-to-Output Layer) (cont.)

Gradient descent rule gives:

∆vkj = −η ∂E

∂vkj
= −η(yk − tk)g

′(ak)zj

= −ηδkzj

where
δk = (yk − tk)g

′(ak).

Observe that this result is identical to that obtained for LMS.
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Backpropagation (Input-to-Hidden Layer)
For the input-to-hidden connection we must differentiate with respect to
the wji ’s which are deeply embedded in

E =
1

2

K∑

k=1


g




M∑

j=0

vkj g

(
d∑

i=0

wjixi

)
− tk



2

Apply chain rule:

∆wji = −η ∂E

∂wji

= −η ∂E
∂zj

∂zj
∂aj

∂aj
∂wji

= −η
K∑

k=1

(yk − tk)g
′(ak)︸ ︷︷ ︸

δk

vkjg
′(aj)xi

= −η
K∑

k=1

δkvkjg
′(aj)xi
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Backprop. (Input-to-Hidden Layer) (cont.)

∆wji = −ηδjxi

where

δj = g ′(aj)
K∑

k=1

vkjδk

Observe: that we need to propagate the errors (δ’s) backwards to update
the weights v and w

∆vkj = −ηδkzj
δk = (yk − tk)g

′(ak)

∆wji = −ηδjxi

δj = g ′(aj)
K∑

k=1

vkjδk
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Error Backpropagation

Apply input x and forward propagate through the network using
aj =

∑d
i=0 wjixi and zj = g(aj ) to find the activations of all the

hidden and output units.

Compute the deltas δk for all the output units using
δk = (yk − tk)g

′(ak).

Backpropagate the δ’s using δj = g ′(aj )
∑K

k=1 vkjδk to obtain δj for
each hidden unit in the network.

Time and space complexity:

d input units, M hidden units and K output units results in M(d + 1)
weights in first layer and K (M + 1) weights in second layer. Space and
time complexity is O(M (K + d)). If e training epochs are performed, then
time complexity is O(e M (K + d)).
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Backprop. (Output-to-Hidden Layer) Vis.

bias

bias

x0 = 1 x1 x2

y1 y2

z0 = 1
z1 z2 z3

δ1 δ1 δ1

δ1 vnew13 = v13 − ηδ1z3
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Backprop. (Hidden-to-Input Layer) Vis.

bias

bias

x0 = 1 x1 x2

y1 y2

z0 = 1
z1 z2 z3

δ1 δ2

wnew
12 = w12 − η [g ′(a1)(v11δ1 + v21δ2)]︸ ︷︷ ︸

δj
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Property of Activation Functions

In the Backpropagation algorithm the derivative of g(a) is required to
evaluate the δ’s.

Activation functions

g1(a) =
1

1 + exp(−βa) and g2(a) = tanh(βa)

obey the property

g ′1(a) = β g1(a)(1− g1(a))

g ′2(a) = β(1− (g2(a))
2)
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Online Backpropagation Algorithm

input : (x1, t1), . . . , (xN , tN ) ∈ Rd × {C1, C2, . . . , CK}, η ∈ R+,max.epoch ∈ N, ǫ ∈ R+

output: w, v
begin

Randomly initialize w, v
epoch← 0
repeat

for n ← 1 to N do
x← select pattern xn
vkj ← vkj − ηδk zj
wji ← wji − ηδj xi

epoch ← epoch + 1
until (epoch = max.epoch) or (‖∇E‖ < ǫ)
return w, v

end
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Batch Backpropagation Algorithm

input : (x1, t1), . . . , (xN , tN ) ∈ R
d × {C1, C2, . . . , CK}, η ∈ R+,max.epoch ∈ N, ǫ ∈ R+

output: w, v
begin

Randomly initialize w, v
epoch← 0, ∆wji ← 0, ∆vkj ← 0
repeat

for n ← 1 to N do
x← select pattern xn
∆vkj ← ∆vkj − ηδkzj , ∆wji ← ∆wji − ηδj xi

vkj ← vkj +∆vkj
wji ← wji +∆wji

epoch ← epoch + 1
until (epoch = max.epoch) or (‖∇E‖ < ǫ)
return w, v

end
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Multi-Layer Networks & Heaviside Step Func.
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Possible decision boundaries which can be generated by networks having
various numbers of layers and using Heaviside activation function.
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Multi-Layer NN for XOR Separability Problem

1 1

11

−1
0.7 −0.4

0.5

−1.5

x0

z0

x1

z1

x2

z2

y

x1 x2 x1 XOR x2
−1 −1 −1
−1 +1 +1
+1 −1 +1
+1 +1 −1

g(a) =

{
−1 if a < 0
+1 if a ≥ 0
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Multi-Layer NN for XOR Sep. Problem (cont.)
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Expressive Power of Multi-Layer Networks

With a two-layer network and a sufficient number of hidden units, any
type of function can be represented when given proper nonlinearities and
weights.

The famous mathematician Andrey Kolmogorov proved that any
continuous function y(x) defined on the unit hypercube [0, 1]n, n ≥ 2 can
be represented in the form

y(x) =

2n+1∑

j=1

Ξj

(
d∑

i=1

Ψij(xi )

)

for properly chosen Ξj and Ψij .
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Bayes Decision Region vs. Neural Network
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Points from blue and red class are generated by a mixture of Gaussians.
Black curve shows optimal separation in a Bayes sense. Gray curve shows
neural network separation of two independent backpropagation learning
runs.
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Neural Network (Density) Decision Region
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Overfitting/Underfitting & Generalization

Consider the problem of polynomial curve fitting where we shall fit the
data using a polynomial function of the form:

y(x ,w) = w0 + w1x + w2x
2 + . . .+ wMxM =

M∑

j=0

wjx
j .

We measure the misfit of our predictive function y(x ,w) by means of error
function which we like to minimize:

E (w) =
1

2

N∑

i=1

(y(xi ,w)− ti)
2

where ti is the corresponding target value in the given training data set.
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Polynomial Curve Fitting
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Polynomial Curve Fitting (cont.)

M = 0 M = 1 M = 3 M = 9
w⋆
0 0.19 0.82 0.31 0.35

w⋆
1 −1.27 7.99 232.37

w⋆
2 −25.43 −5321.83

w⋆
3 17.37 48568.31

w⋆
4 −231639.30

w⋆
5 640042.26

w⋆
6 −1061800.52

w⋆
7 1042400.18

w⋆
8 −557682.99

w⋆
9 125201.43

Table: Coefficients w⋆ obtained from polynomials of various order. Observe the dramatically
increase as the order of the polynomial increases (this table is taken from Bishop’s book).
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Polynomial Curve Fitting (cont.)

Observe:

if M is too small then the model underfits the data

if M is too large then the model overfits the data

If M is too large then the model is more flexible and is becoming
increasingly tuned to random noise on the target values. It is interesting to
note that the overfitting problem become less severe as the size of the
data set increases.

x

t

N = 15

0 1
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t

N = 100

0 1

−1

0

1
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Polynomial Curve Fitting (cont.)

One technique that can be used to control the overfitting phenomenon is
the regularization.

Regularization involves adding a penalty term to the error function in
order to discourage the coefficients from reaching large values.

The modified error function has the form:

Ê (w) =
1

2

N∑

i=1

(y(xi ,w)− ti )
2 +

λ

2
wTw.

By means of the penalty term one reduces the value of the coefficients
(shrinkage method).
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Regularized Polynomial Curve Fitting M = 9

x

t

ln λ = −18

0 1

−1

0

1
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Regularization in Neural Networks

Number of input/output units is generally determined by the
dimensionality of the data set.

Number of hidden units M is free parameter that can be adjusted to
obtain best predictive performance.

Generalization error is not a simple function of M due to the presence
of local minima in the error function.

One straightforward way to deal with this problem is to increase
stepwise the value of M and to choose the specific solution having
the smallest test error.

T.Stibor (TUM) Course IN2207 SS2011 148 / 256



Regularization in Neural Networks (cont.)

Equivalent to the regularized curve fitting approach, we can choose a
relatively large value for M and control the complexity by the addition of a
regularized term to the error function.

Ê (w) = E (w) +
λ

2
wTw

This form of regularization in neural networks is known as weight decay.

Weight decay encourages weight values to decay towards zero, unless
supported by the data.

It can be considered as an example of a parameter shrinkage method
because parameter values are shrunk towards zero.

It can be also interpreted as the removal of non-useful connections
during training.
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A too Overfitted Neural Network Model
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Hidden units: 20, weight decay: 0 Hidden units: 20, weight decay: 0
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A too Underfitted Neural Network Model
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Hidden units: 20, weight decay: 2 Hidden units: 20, weight decay: 2
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Model Complexity is Properly Penalized

0 2 4 6
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Hidden units: 20, weight decay: 0.3 Hidden units: 20, weight decay: 0.3
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Regularization by Early Stopping

Another alternative of regularization as a way of controlling the
effective complexity of a network is the procedure of early stopping.

error

train

test

epochs

stop
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Example Early Stopping after 10 Epochs
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Hidden units: 20, weight decay: 0, early stop after: 10 Hidden units: 20, weight decay: 0, early stop after: 10
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Example Early Stopping after 50 Epochs

−1 0 1 2 3 4 5 6
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Hidden units: 20, weight decay: 0, early stop after: 50 Hidden units: 20, weight decay: 0, early stop after: 50
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Example Early Stopping after 100 Epochs
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Hidden units: 20, weight decay: 0, early stop after: 100 Hidden units: 20, weight decay: 0, early stop after: 100
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Cross-Validation & Prediction Error

Most commonly used method for estimating the prediction error
(generalization error) on new data is cross-validation.

TrainTrainTrainTrain Test

TrainTrainTrainTrain Test

TrainTrainTrainTrainTest

1

1

2

2

2

3

3

3

4

4 5

5

5

4

1

Split training data into K roughly equal-sized parts (e.g. K = 5). Learn
neural network on K − 1 training parts and predict the not seen testing
part. Perform this for k = 1, 2, . . . ,K and combine the K estimates of
prediction error (test error).
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Cross-Validation & Prediction Error (cont.)
Typical choices of K are 5 or 10. If training data set consists of N data
points and K = N, then one obtains the leave-one-out cross-validation
method.

# number of folds

folds <- 10

samps <- sample(rep(1:folds, length=n), n, replace=FALSE)

for (fold.iter in 1:folds) {

train <- dataset[samps!=fold.iter,] # fit the model

test <- dataset[samps==fold.iter,] # predict

# perform here neural network training on set train

# perform here neural network prediction on set test

}
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Bias-Variance Dilemma

Idea: decompose generalization error into the two terms
(bias,variance).

Let us consider our curve fitting problem again. Let h(x) be the true
(but unknown) function with continuous valued output with noise.

We want to estimate h(·) based on training data sets D each of size
N.

The natural way to measure the effectiveness of the estimator is to
use the mean-square deviation from the desired optimal.

Averaging over all training data sets D one gets the decomposition:

ED
[
{y(x,D) − h(x)}2

]

= {ED[y(x,D)] − h(x)}2︸ ︷︷ ︸
bias2

+ED
[
{y(x,D) − ED[y(x,D)]}2

]
︸ ︷︷ ︸

variance
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Bias-Variance Dilemma (cont.)

The bias-variance dilemma is general phenomenon and also occurs as the
under/overfitting problem in neural networks. In the context of neural
networks:

Bias is a measure of how much the network output, averaged over all
possible data sets differs from the desired function.

Variance is a measure of how much the network output varies
between data sets.

In early stage of training, the bias is large because the network is far from
the desired function. If the network is trained too long, then the network
will also have learned the noise specific in the data set.
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Bias-Variance Dilemma (cont.)

test

train
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high bias low bias

high variancelow variance

highlow
model complexity
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Momentum

Gradient descent can be very slow if η is too small, and can oscillate
widely if η is too large.

Idea: use fraction of the previous weight change and actual gradient
term to control non-radical revisions in the updates.

∆wnew = −η ∂E
∂w

+ α∆w, 0 ≤ α ≤ 1.

Momentum:

can cancel side-to-side oscillations across the error valley,

can cause a faster convergence when weight updates are all in the
same direction because the learning rate is amplified.
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Momentum Example Rosenbrock Function
Rosenbrock function f (x , y) = (1− x)2 + 100(y − x2)2 has global
minimum f (x , y) = (0, 0) at (1, 1). Momentum param. α = 0.021,
learning rate η = 0.001.
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number of iterations: 10 ,eta: 0.001 ,alpha : 0.021

minimum

start
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Momentum Example Rosenbrock Func. (cont.)
Setting α = 0 (no momentum)
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number of iterations: 5649 ,eta: 0.001 ,alpha : 0
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Momentum Example Rosenbrock Func. (cont.)
Setting α = 0 (no momentum) and a larger learning rate η
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Adaptive Parameter

Adjust the parameters automatically as learning progress.

Check if particular weight update decreased the error function.
◮ If not we overleaped and η should be reduced.
◮ If several steps in a row have decreased the error, we are too

conservative and could try increasing η

∆η =





+a if ∆E < 0 consistently (e.g. last K steps)
−bη if ∆E > 0
0 otherwise
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Hopfield Network Introductory Example

Suppose we want to store N
binary images in some
memory.

The memory should be
content-addressable and
insensitive to small errors.

We present corrupted
images to the memory (e.g.
our brain) and recall the
corresponding images.

presentation of corrupted images

recalled by the memory
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Hopfield Network

S1

S2

S3

S4

S5

w51 = w15

wij denotes weight
connection from unit j to
unit i

no unit has connection with
itself wii = 0, ∀i
connections are symmetric
wij = wji , ∀i , j

State of unit i can take values ±1 and is denoted as Si . State dynamics are
governed by activity rule:

Si = sgn



∑

j

wijSj


 , where sgn(a) =

{
+1 if a ≥ 0,
−1 if a < 0
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Learning Rule in a Hopfield Network

Learning in Hopfield networks:

Store a set of desired memories {x(n)} in the network, where each
memory is a binary pattern with xi ∈ {−1,+1}.
The weights are set using the sum of outer products

wij =
1

N

∑

n

x
(n)
i x

(n)
j ,

where N denotes the number of units (N can also be some positive
constant, e.g. number of patterns). Given a m × 1 column vector a and
1× n row vector b. The outer product a⊗ b (short a b) is defined as the
m × n matrix


a1
a2
a3


⊗ [b1 b2 b3] =




a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3


 , m = n = 3
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Learning in Hopfield Network (Example)

Suppose we want to store patterns x(1) = [−1,+1,−1] and
x(2) = [+1,−1,+1].

[
−1
+1
−1

]
⊗ [−1,+1,−1] =




+1 −1 +1
−1 +1 −1
+1 −1 +1




+

[
+1
−1
+1

]
⊗ [+1,−1,+1] =




+1 −1 +1
−1 +1 −1
+1 −1 +1



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Learning in Hopfield Network (Example) (cont.)

W =
1

3




0 −2 +2
−2 0 −2
+2 −2 0




Recall: no unit has connection with itself.

The storage of patterns in the network can also be interpreted as
constructing stable states. The condition for patterns to be stable is:

sgn


∑

j

wijxi


 = xi ,∀i .

Suppose we present pattern x(1) to the network and want to restore the
corresponding pattern.
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Learning in Hopfield Network (Example) (cont.)

Let us assume that the network states are set as follows: Si = xi , ∀i . We
can restore pattern x(1) = [−1,+1,−1] as follows:

S1 = sgn




3∑

j=1

w1jSj


 = −1 S2 = sgn




3∑

j=1

w2jSj


 = +1

S3 = sgn




3∑

j=1

w3jSj


 = −1

Can we also restore the original patterns by presenting “similar” patterns
which are corrupted by noise?
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Updating States in a Hopfield Network

Synchronous updates:

all units update their states Si = sgn
(∑

j wijSj

)
simultaneously.

Asynchronous updates:

one unit at a time updates its state. The sequence of selected units
may be a fixed sequence or a random sequence.

Synchronously updating states can lead to oscillation (no convergence to a
stable state).

S1 = +1 S2 = −1

1

1
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Aim of a Hopfield Network

Our aim is that by presenting a corrupted pattern, and by applying iteratively
the state update rule the Hopfield network will settle down in a stable state
which corresponds to the desired pattern.

Hopfield network is a method for

pattern completion

error correction.

The state of a Hopfield network can be expressed in terms of the energy
function

E = −1

2

∑

i ,j

wijSiSj

Hopfield observed that if a state is a local minimum in the energy
function, it is also a stable state for the network.
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Basin of Attraction and Stable States

basin of attraction

��
��
��

��
��
��

��
��
��
��

��
��
��
��

stable states

Within the space the stored patterns x(n) are acting like attractors.
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Haykin’s Digit Example
Suppose we stored the following digits in the Hopfield network:

Energy = −67.73

Pattern 0

Energy = −67.87

Pattern 1

Energy = −82.33

Pattern 2

Energy = −86.6

Pattern 3

Energy = −77.73

Pattern 4

Energy = −90.47

Pattern 6

Energy = −83.13

Pattern 9

Energy = −66.93

Pattern box
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Updated States of Corrupted Digit 6

Energy = −10.27

Start Pattern

Energy = −12.2

updated unit 40

Energy = −13.6

updated unit 39

Energy = −14.87

updated unit 81

Energy = −15.87

updated unit 98

Energy = −18.07

updated unit 80

Energy = −20.4

updated unit 12

Energy = −22.2

updated unit 114

Energy = −23.33

updated unit 115

Energy = −25.73

updated unit 49

Energy = −26.8

updated unit 117

Energy = −29.67

updated unit 3

Energy = −30.13

updated unit 48

Energy = −31.47

updated unit 6

Energy = −34.4

updated unit 79
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Updated States of Corrupted Digit 6 (cont.)

Energy = −36.73

updated unit 113

Energy = −38.4

updated unit 57

Energy = −41.07

updated unit 103

Energy = −42.4

updated unit 18

Energy = −45.27

updated unit 109

Energy = −47.6

updated unit 83

Energy = −50.4

updated unit 71

Energy = −52.67

updated unit 77

Energy = −56.47

updated unit 26

Energy = −58.4

updated unit 15

Energy = −60.67

updated unit 31

Energy = −63.33

updated unit 58

Energy = −64.47

updated unit 16

Energy = −68

updated unit 29

Energy = −71.27

updated unit 88
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Updated States of Corrupted Digit 6 (cont.)
The resulting pattern (stable state with energy −90.47) matches the
desired pattern.

Energy = −73.73

updated unit 72

Energy = −77.27

updated unit 90

Energy = −81.47

updated unit 19

Energy = −84.27

updated unit 21

Energy = −87.33

updated unit 25

Energy = −90.47

updated unit 73

Energy = −90.47

Original Pattern 6
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Recall a Spurious Pattern

Energy = −28.27

Start Pattern

Energy = −28.27

updated unit 44

Energy = −30.27

updated unit 12

Energy = −31.93

updated unit 64

Energy = −32.8

updated unit 45

Energy = −33.4

updated unit 98

Energy = −35.6

updated unit 111

Energy = −37.6

updated unit 50

Energy = −40

updated unit 81

Energy = −42.6

updated unit 95

Energy = −44.53

updated unit 65

Energy = −44.8

updated unit 15

Energy = −48.13

updated unit 54

Energy = −50.53

updated unit 62

Energy = −51.87

updated unit 33
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Recall a Spurious Pattern (cont.)

Energy = −53.73

updated unit 37

Energy = −56.53

updated unit 91

Energy = −59.93

updated unit 58

Energy = −61.6

updated unit 84

Energy = −63.2

updated unit 43

Energy = −63.73

updated unit 28

Energy = −66.8

updated unit 112

Energy = −67.6

updated unit 48

Energy = −69

updated unit 88

Energy = −70.4

updated unit 26

Energy = −71.93

updated unit 73

Energy = −74.13

updated unit 70

Energy = −76.6

updated unit 40

Energy = −80.27

updated unit 117

Energy = −81.4

updated unit 106
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Recall a Spurious Pattern (cont.)
The Hopfield network settled down in local minima with energy −84.93.
This pattern however is not the desired pattern. It is a pattern which was
not stored in the network.

Energy = −84.8

updated unit 61

Energy = −84.93

updated unit 15

Energy = −83.13

Original Pattern 9
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Incorrect Recall of Corrupted Pattern 2

Energy = −22.07

Start Pattern

Energy = −22.07

updated unit 97

Energy = −22.13

updated unit 17

Energy = −22.33

updated unit 58

Energy = −24.13

updated unit 45

Energy = −24.53

updated unit 18

Energy = −27.6

updated unit 100

Energy = −28.33

updated unit 7

Energy = −29.87

updated unit 103

Energy = −31.47

updated unit 81

Energy = −32.13

updated unit 68

Energy = −32.33

updated unit 86

Energy = −35.47

updated unit 119

Energy = −36.53

updated unit 33

Energy = −38.67

updated unit 87
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Incorrect Recall of Corrupted Pattern 2 (cont.)

Energy = −39.2

updated unit 57

Energy = −41.73

updated unit 73

Energy = −45.47

updated unit 120

Energy = −48

updated unit 104

Energy = −49.6

updated unit 43

Energy = −51.6

updated unit 91

Energy = −51.67

updated unit 37

Energy = −55.6

updated unit 3

Energy = −56.4

updated unit 31

Energy = −58.27

updated unit 24

Energy = −60.73

updated unit 101

Energy = −61.87

updated unit 41

Energy = −62.87

updated unit 117

Energy = −64.8

updated unit 65

Energy = −68.93

updated unit 10
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Incorrect Recall of Corrupted Pattern 2 (cont.)

Energy = −69.87

updated unit 8

Energy = −70.13

updated unit 76

Energy = −71.47

updated unit 32

Energy = −72.93

updated unit 106

Energy = −73.47

updated unit 75

Energy = −77.07

updated unit 114

Energy = −78.8

updated unit 67

Energy = −82.13

updated unit 112

Energy = −82.67

updated unit 47

Energy = −83.8

updated unit 85

Energy = −84.53

updated unit 96

Energy = −85.33

updated unit 48

Energy = −86.4

updated unit 28

Energy = −87.73

updated unit 38

Energy = −88.53

updated unit 27
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Incorrect Recall of Corrupted Pattern 2 (cont.)
Although we presented the corrupted pattern 2, the Hopfield network
settled down in the stable state that corresponds to pattern 6.

Energy = −90.47

updated unit 86

Energy = −82.33

Original Pattern 2
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MacKay’s Example of an Overloaded Network

Six patterns are stored in the Hopfield network, however most of them are
not stable states.

Desired memories:
! ! ! ! !! ! ! ! !

Spurious states represent stable states that are different from the stored
desired patterns.
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Spurious States and Capacity

Reversed states ((−1) · x(n)) have same energy as the original
patterns x(n).

Stable mixture states are not equal to any single pattern. They
corresponds to a linear combination of an odd number of patterns.

Spin glass states are local minima that are not correlated with any
finite number of the original patterns.

Capacity:
What is the relation between the number d of units and the maximum
number Nmax of patterns one can store by allowing some small error. If
Nmax =

d
4 log d then most of stored patterns can be recalled perfectly.
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Support Vector Machine (SVM)
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First papers on SVM

A Training Algorithm for Optimal Margin Classifiers, Bernhard E.
Boser and Isabelle M. Guyon and Vladimir Vapnik, Proceedings of the fifth
annual workshop on Computational learning theory (COLT), 1992
http://www.clopinet.com/isabelle/Papers/colt92.ps.Z

Support-Vector Networks, Corinna Cortes and Vladimir Vapnik,
Machine Learning, 20(3):273-297, 1995
http://homepage.mac.com/corinnacortes/papers/SVM.ps

Extracting Support Data for a Given Task, Bernhard Schölkopf and
Christopher J.C. Burges and Vladimir Vapnik, First International
Conference on Knowledge Discovery & Data Mining, 1995
http://research.microsoft.com/∼cburges/papers/kdd95.ps.gz
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Literature (Papers, Bookchapter, T.Report)

Statistical Learning and Kernel Method, Bernhard Schölkopf,
Microsoft Research Technical Report, 2000,
ftp://ftp.research.microsoft.com/pub/tr/tr-2000-23.pdf

An Introduction to Kernel-based Learning Algorithms, K.-R. Müller,
S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, IEEE Neural Networks,
12(2):181-201, 2001,
http://ieeexplore.ieee.org/iel5/72/19749/00914517.pdf

Support Vector Machines, S. Mika, C. Schäfer, P. Laskov, D. Tax and
K.-R. Müller, Bookchapter : Handbook of Computational Statistics
(Concepts and Methods),
http://www.xplore-stat.de/ebooks/scripts/csa/html/

Support Vector Machines for Classification and Regression, S.R.
Gunn, Technical Report,
http://www.ecs.soton.ac.uk/∼srg/publications/pdf/SVM.pdf
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Literature (Paper, Books)

A Tutorial on Support Vector Machines for Pattern Recognition,
Christopher J.C. Burges, Kluwer Academic Publishers, Boston
http://research.microsoft.com/∼cburges/papers/SVMTutorial.pdf

Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond, Bernhard Schölkopf and Alexander J. Smola,
MIT Press, 2001

An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods, Nello Cristianini and John
Shawe-Taylor, Cambridge University Press, 2000

Kernel Methods for Pattern Analysis, John Shawe-Taylor and Nello
Cristianini, Cambridge University Press, 2004

The Nature of Statistical Learning Theory, Vladimir N. Vapnik,
Springer-Verlag, sec. edition, 1999

T.Stibor (TUM) Course IN2207 SS2011 192 / 256

http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf


Literature (WWW and Source Code)

http://www.kernel-machines.org/

http://www.support-vector.net/

http://www.learning-with-kernels.org/

http://www.pascal-network.org/

http://www.r-project.org/ (packages e1071,kernlab)
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Scaling Freedom (Problem)

w

{x |w · x + b > 0}

{x |w · x + b = 0}

{x |w · x + b < 0}

Multiplying w and b by the same constant κ gives the same hyperplane,
represented in terms of different parameters

κ[(w · x) + b] = 0⇔ (κw · x+ κb) = 0⇔ (w′ · x) + b′ = 0.

Example: w := (5,−4)T , b := 2; 5x − 4y + 2 = 0⇔ y = 5
4x + 1

2 ,
κ := 3; 15x − 12y + 6 = 0⇔ y = 5

4x + 1
2
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Canonical Hyperplane

A canonical hyperplane with respect to given m examples
(x1, y1), . . . , (xm, ym) ∈ X × {±1} is defined as a function

f (x) = (w · x) + b

where w is normalized such that

min
i=1,...,m

|f (xi )| = 1

i.e. scaling w and b such that the points closest to the hyperplane satisfy
|(w · xi ) + b| = 1
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Plus/Minus and Zero Hyperplane

w

x1

x2

1
‖w‖

1
‖w‖

2
‖w‖

{x |w · x + b = 1}

{x |w · x + b = 0}
{x |w · x + b = −1}
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Optimal Separating Hyperplane

w

x1

x2

x3

1
‖w‖

1
‖w‖

2
‖w‖

{x|w · x + b = 1}

{x|w · x + b = 0}
{x|w · x + b = −1}

Let x3 be any point on the “mi-
nus” hyperplane and let x1 be the
closest point to x3.

w · x1 + b = +1

w · x3 + b = −1
x1 = x3 + λw

w · (x3 + λw)︸ ︷︷ ︸
x1

+b = 1

w · x3 + b︸ ︷︷ ︸
−1

+λ‖w‖2 = 1 ⇒ λ = 2
‖w‖2 . We are interested in margin, i.e.

‖x1 − x3‖ = ‖λw‖ = λ‖w‖ = 2
‖w‖2 ‖w‖ = 2

‖w‖
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Formulation as an Optimization Problem

Hyperplane with maximum margin (the smaller the norm of the weight
vector w, the larger the margin):

minimize
1

2
‖w‖2

subject to yi ((w · xi ) + b) ≥ 1, i = 1, . . . ,m

Introduce Lagrange multipliers αi ≥ 0 and a Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m∑

i=1

αi(yi ((xi · w) + b)− 1)

At the extrema, we have

∂

∂b
L(w, b,α) = 0,

∂

∂w
L(w, b,α) = 0
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Optimization and Kuhn-Tucker Theorem

leads to solution

m∑

i=1

αiyi = 0, w =

m∑

i=1

αiyixi .

The extreme point solution obtained has an important property that results
from optimization known as the Kuhn-Tucker theorem. The theorem says:

Lagrange multiplier can be non-zero only if the corresponding inequality
constraint is an equality at the solution.

This implies that only the training examples xi that lie on the plus and
minus hyperplane have their corresponding αi non-zero.
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Relevant/Irrelevant Support Vector

More formally, the Karush-Kuhn-Tucker complementarity conditions say:

αi [yi ((xi · w) + b)− 1] = 0, i = 1, . . . ,m

the Support Vectors lie on the margin. That means for all training points

[yi ((xi ·w) + b)] > 1 ⇒ αi = 0 → xi irrelevant

[yi ((xi ·w) + b)] = 1 (on margin) → xi Support Vector
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Relevant/Irrelevant Support Vector

w

αi > 0

αj > 0

αk > 0

αl > 0
αm = 0

αn = 0

1
‖w‖

1
‖w‖

2
‖w‖

{x|w · x + b = 1}

{x|w · x + b = 0}
{x|w · x + b = −1}
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Dual Form

The dual form has many advantages

Formulate optimization problem without w (mapping w in
high-dimensional spaces).

Formulate optimization problem by means of α, yi and dot product
xi · xj .
Quadratic Programming Solver.

maximize W (α) =
m∑

i=1

αi −
1

2

m∑

i ,j=1

αiαjyiyj(xi · xj )

subject to αi ≥ 0, i = 1, . . . ,m and
m∑

i=1

αiyi = 0
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Hyperplane Decision Function

The solution is determined by the examples on the margin. Thus

f (x) = sgn ((x · w) + b)

= sgn

(
m∑

i=1

yiαi (x · xi ) + b

)

where
αi [yi ((xi · w) + b)− 1] = 0, i = 1, . . . ,m

and

w =
m∑

i=1

αiyixi
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Non-separable Case

w

Case where the constraints yi(w · xi + b) ≥ 1 cannot be satisfied, i.e.
αi →∞
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Relax Constraints (Soft Margin)

Modify the constraints to

yi(w · xi + b) ≥ 1− ξi , with ξi ≥ 0

and add

C ·
m∑

i=1

ξi

i.e. distance of error points to their correct place in the objective function

minimize
1

2
‖w‖2 + C ·

m∑

i=1

ξi

Same dual, with additional constraints 0 ≤ αi ≤ C
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Non-separable Case (Part 2)

m

m

m

m

m

m

m

m

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

x
1

x
2

This data set is not properly separable with lines (also when using many
slack variables)
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Separate in Higher-Dim. Space
Map data in higher-dimensional space and separate it there with a
hyperplane

m

m

m

m

m

m

m

m

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

x
1

x
2

m

m

m

m

m

m

m

m

5

5

5

5

5

5

5

5

5

5

5

5

5

z
1

z
3

5

z
2

Φ : R2 → R
3

(x1, x2) 7→ (z1, z2, z3) := (x21 ,
√
2x1x2, x

2
2 )
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Feature Space
Apply the mapping

Φ : RN → F
x 7→ Φ(x)

to the data x1, x2, . . . , xm ∈ X and construct separating hyperplane in F
instead of X . The samples are preprocessed as
(Φ(x1), y1), . . . , (Φ(xm), ym) ∈ F × {±1}.

Obtained decision function:

f (x) = sgn

(
m∑

i=1

yiαi (Φ(x) · Φ(xi )) + b

)

= sgn

(
m∑

i=1

yiαi k(x, xi ) + b

)

How about patters x ∈ R
N and product features of order d? Dim(F)

grows like Nd . Example N = 16 × 16, and d = 5 −→ dimension 1010.
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Kernels

A kernel is a function k , such that for all x, y ∈ X

k(x, y) = (Φ(x) · Φ(y)),

where Φ is a mapping from X to an dot product feature space F .

The m ×m matrix K with elements Kij = k(xi , xj ) is called kernel matrix
or Gram matrix. The kernel matrix is symmetric and positive semi-definite,
i.e. for all ai ∈ R, i = 1, . . . ,m, we have

m∑

i ,j=1

aiajKij ≥ 0

Positive semi-definite kernels are exactly those giving rise to a positive
semi-definite kernel matrix K for all m and all sets {x1, x2, . . . , xm} ⊆ X .
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The Kernel Trick Example

Example : compute 2nd order products of two “pixels”, i.e.

x = (x1, x2) and Φ(x) = (x21 ,
√
2x1x2, x

2
2 )

(Φ(x) · Φ(z)) = (x21 ,
√
2x1x2, x

2
2 )(z

2
1 ,
√
2z1z2, z

2
2 )

T

= ((x1, x2)(z1, z2)
T )2

= (x · zT )2
= : k(x, z)
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Kernel without knowing Φ

Recall: mapping Φ : RN → F . SVM depends on the data through dot
products in F , i.e. functions of the form

Φ(xi ) · Φ(xj)

With k such that k(xi , xj ) = Φ(xi ) · Φ(xj), it is not necessary to even
know what Φ(x) is.

Example: k(u, v) = exp
(
−‖u−v‖2γ

)
, in this example F is infinite

dimensional.
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Feature Space (Optimization Problem)

Quadratic optimization problem (soft margin) with kernel:

maximize W (α) =

m∑

i=1

αi −
1

2

m∑

i ,j=1

αiαjyiyjk(xi , xj )

subject to 0 ≤ αi ≤ C , i = 1, . . . ,m and

m∑

i=1

αiyi = 0
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(Standard) Kernels

Linear k0(u, v) = (u · v)
Polynomial k1(u, v) = ((u · v) + Θ)d

Gaussian k2(u, v) = exp

(
−‖u− v‖2

γ

)

Sigmoidal k3(u, v) = tanh(κ(u · v) + Θ)
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SVM Results for Gaussian Kernel

γ = 0.5, C = 50 γ = 0.5, C = 1
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SVM Results for Gaussian Kernel (cont.)

γ = 0.02, C = 50 γ = 10, C = 50
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Link to Statistical Learning Theory
Pattern Classification:

Learn f : X → {±1} from input-output training data

We assume that data is generated from some unknown (but fixed)
probability distribution P(x, y)
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(Empirical) Risk

Learn f from training set (x1, y1), . . . , (xm, ym) ∈ X × {±1}, such that the
expected missclassification error on a test set, also drawn from P(x, y),

R [f ] =

∫
1

2
|f (x) − y |dP(x, y) Expected Risk

is minimal.

Problem: we cannot minimize the expected risk, because P is unknown.
Minimize instead the average risk over training set, i.e.

Remp[f ] =
1

m

m∑

i=1

1

2
|f (xi )− yi | Empirical Risk
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Problems with Empirical Risk

Minimizing the empirical risk (training error), does not imply a small test
error. To see this, note that for each function f and any test set
(x1, y1), . . . , (xm, ym) ∈ X × {±1}, satisfying
{x1, . . . , xm} ∩ {x1, . . . , xm} = {}, there exists another function f ∗ such
that f ∗(xi ) = f (xi ) for all i = 1, . . . ,m, but f ∗(xi) 6= f (xi ) (on all test
samples) for all i = 1, . . . ,m

f

f ∗

f
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A Bound for Pattern Classification
For any f ∈ F and m > h, with a probability of at least 1− η,

R [f ] ≤ Remp[f ]︸ ︷︷ ︸
minimize

+

√
h(ln 2m

h
+ 1)− ln(η/4)

m︸ ︷︷ ︸
minimize

error

high

high

low

small Complexity of Function Set

Training Error

Expected Risk

Complexity
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Measure Complexity of Function Set

How to measure the complexity of a given function set ?

The Vapnik-Chervonenkis (short VC) dimension is defined as the
maximum number of points that can be labeled in all possible ways.

In R
2 we can shatter three non-collinear points.

But we can never shatter four points in R
2.

Hence the VC dimension is h = 3.
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VC Dimension

Separating hyperplanes in R
N have VC dimension N + 1.

Hence: separating hyperplanes in high-dimensional feature spaces
have extremely large VC dimension, and may not generalize well.

But, “margin” hyperplanes can still have a small VC dimension.
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VC Dimension of Margin Hyperplanes

Consider hyperplanes (w · x) = 0 where w is normalized such they are in a
canonical form w.r.t. a set of points X ∗ = {x1, . . . , xr}, i.e.,

min
i=1,...,r

|(w · xi )| = 1.

The set of decision functions fw(x) = sgn(x · w) defined on X ∗ and
satisfying the constraint ‖w‖ ≤ Λ has VC dimension satisfying

h ≤ min(R2Λ2 + 1,N + 1)

Here, R is the smallest sphere around the origin containing X ∗.
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Smallest Sphere and VC Dimension

2
Λ1

2
Λ2

Hyperplanes with a large margin ( 2
Λ1
) induce only a small number of

possibilities to separate the data, i.e. the VC dimension is small (left
figure). In contrast, smaller margins ( 2

Λ2
) induce more separating

hyperplanes, i.e. the VC dimension is large (right figure).
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SVM (RBF Kernel) and Bayes Decision
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Implementation (Matrix notation)

Recall:

maximize W (α) =
m∑

i=1

αi −
1

2

m∑

i ,j=1

αiαjyiyj(xi · xj )

subject to αi ≥ 0, i = 1, . . . ,m and
m∑

i=1

αiyi = 0

This can be expressed in a matrix notation as

min
α

1

2
αTHα+ cTα
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Implementation (Matrix notation) cont.

where
H = ZZT , cT = (−1, . . . ,−1)

with constraints
αTY = 0, αi ≥ 0, i = 1, . . . ,m

where

Z =




y1x1
y2x2
...

ymxm


 Y =




y1
y2
...
ym


 .
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Implementation (Maple)

CalcAlphaVector := proc(LPM::Matrix, Kernel, C)

local H,i,j,k,rows,a,b,c,bl,bu,Aeq,

beq,Y,QPSolution;

rows := RowDimension(LPM);

H := Matrix(1..rows,1..rows);

a := Vector(2);

b := Vector(2);

beq := Vector([0]);

Y := Vector(rows);

for k from 1 to rows do

Y[k] := LPM[k,3];

end do;
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Implementation (Maple) cont.

for i from 1 to rows do

for j from 1 to rows do

a[1] := LPM[i,1];

a[2] := LPM[i,2];

b[1] := LPM[j,1];

b[2] := LPM[j,2];

H[i,j] := Y[i] * Y[j] * Kernel(a,b);

end do;

end do;
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Implementation (Maple) cont.

c := Vector(1..rows, fill = -1);

bl := Vector(1..rows, fill = 0);

bu := Vector(1..rows, fill = C);

Aeq := convert(Transpose(Y),Matrix);

QPSolution := QPSolve([c,H],

[NoUserValue,NoUserValue,Aeq,beq],

[bl,bu]);

return QPSolution[2];

end proc:
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Using SVM in R (e1071)

Example, how to use SVM classification in R:

library(e1071);

# load famous Iris Fisher data set

data(iris);

attach(iris);

# number of rows

n <- nrow(iris);

# number of folds

folds <- 10

samps <- sample(rep(1:folds, length=n),

n, replace=FALSE)
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Using SVM in R (e1071) cont.

# Using the first fold:

train <- iris[samps!=1,] # fit the model

test <- iris[samps==1,] # predict

# features 1 -> 4 from training set

x_train <- train[,1:4];

# class labels

y_train <- train[,5];

# determine the hyperplane

model <- svm(x_train,y_train,type="C-classification",

cost=10,kernel="radial",

probability = TRUE, scale = FALSE);
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Using SVM in R (e1071) cont.

# features 1 -> 4 from test set (no class labels)

x_test <- test[,1:4];

# predict class labels for x_test

pred <- predict(model,x_test,decision.values = TRUE);

# get true class labels

y_true <- test[,5];

# check accuracy:

table(pred, y_true);

# determine test error

sum(pred != y_true)/length(y_true);

# do that for all folds, i.e. train <- iris[samps!=2,]

# test <- iris[samps==2,] , ........
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SVM Multi-Class Classification

A SVM is a binary classifier, that is, the class labels can only take two
values: ±1.
Many real-world problems, however, have more than two classes (e.g.
optical character recognition).

One Versus the Rest: To get M-class classifiers, construct set of binary
classifiers f 1, f 2, . . . , f M , each trained to separate one class from rest.

Combine them to get a multi-class classification according to the maximal
output before applying the sgn function.

argmax
j=1...M

g j (x), where g j(x) =

m∑

i=1

yiα
j
ik(x , xi ) + bj .

and
f j(x) = sgn(g j (x))
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SVM Multi-Class Classification (cont.)

Recall: g j(x) returns a signed real-valued value which can be
interpreted as the distance from the separation (hyper)plane to the
point x .

Value can also be interpreted as a confidence value. The larger the
value the more confident one is that the point x belong to the
positive class.

Hence, assign point x to the class whose confidence value is largest
for this point.
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SVM Pairwise Classification

Train a classifier for each possible pair of classes.

For M classes, this results in
(
M
2

)
= (M−1)M

2 binary classifiers.

Classify an unknown point x by applying each of the
(
M
2

)
binary

classifiers and count how many times point x was assigned to that
class label.

Class label with highest count is then the considered label for the
unknown point x .
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One-Class SVM for Novelty Detection

Idea: enclose data with a hypersphere and classify new data as normal if it
falls within the hypersphere and otherwise as anomalous data.
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Minimum Enclosing Hypersphere

Given normal data X = {x1, x2, . . . , xm} ∈ R
d and let r be the radius of

the hypersphere and c ∈ R
d the center. To find the minimum enclosing

hypersphere we have to solve the following optimization problem:

minimize r2

subject to ‖Φ(xi )− c‖2 ≤ r2, i = 1, . . . ,m.

Lagrangian multiplier αi ≥ 0 for each constraint

L(c, r ,α) = r2 +
m∑

i=1

αi

{
‖Φ(xi )− c‖2 − r2

}
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Minimum Enclosing Hypersphere (cont.)

Setting the derivatives with respect to c and r to zero

∂L(c, r ,α)

∂c
= 2

m∑

i=1

αi(Φ(xi )− c) = 0

∂L(c, r ,α)

∂r
= 2r

(
1−

m∑

i=1

αi

)
= 0

one obtains the following equations

m∑

i=1

αi = 1 and c =
m∑

i=1

αiΦ(xi ). (2)
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Minimum Enclosing Hypersphere (cont.)

Inserting relation (2) into

L(c, r ,α) = r2 +

m∑

i=1

αi

{
‖Φ(xi )− c‖2 − r2

}

=
m∑

i=1

αi‖Φ(xi )− c‖2

=
m∑

i=1

αik(xi , xi )−
m∑

i ,j=1

αiαjk(xi , xj )

gives the dual form.
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Minimum Enclosing Hypersphere (cont.)

To find α in dual form, solve optimization problem:

maximize W (α) =

m∑

i=1

αik(xi , xi )−
m∑

i ,j=1

αiαjk(xi , xj)

subject to

m∑

i=1

αi = 1, and αi ≥ 0, i = 1, . . . ,m.

Recall: Lagrange multiplier can be non-zero only if the corresponding
inequality constraint is an equality at the solution.
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Minimum Enclosing Hypersphere (cont.)
The KKT complementarity conditions are satisfied by the optimal
solutions α, (c, r)

αi

{
‖Φ(xi )− c‖2 − r2

}
, i = 1, . . . ,m.

This implies that only training examples xi that lie on the surface of the
optimal hypersphere have their corresponding αi > 0.
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Decision Function

f (x) = sgn(r2 − ‖Φ(x) − c‖2)

= sgn

(
r2 −

{
(Φ(x) · Φ(x)) − 2

m∑

i=1

αi (Φ(x) · Φ(xi ))

+

m∑

i ,j=1

αiαj(Φ(xi ) · Φ(xj))








= sgn

(
r2 −

{
k(x, x) − 2

m∑

i=1

αik(x, xi )

+
m∑

i ,j=1

αiαjk(xi , xj)







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Soft Enclosing Hypersphere
If we have some noise in our training set the “hard” enclosing hypersphere
approach may force a larger radius than should really be needed. In other
words, the solution would not be robust.

Aim: Find minimum enclosing hypersphere that contains (allmost) all
training examples, but not some small portion of extreme training
examples.
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Soft Enclosing Hypersphere (cont.)

Introduce slack variables ξ, ξi ≥ 0, i = 1, . . . ,m

minimize r2 + C

m∑

i=1

ξi

subject to ‖Φ(xi )− c‖2 ≤ r2 + ξi , ξi ≥ 0, i = 1, . . . ,m.

Lagrangian multiplier αi , βi ≥ 0 for each constraint

L(c, r ,α,β) = r2 + C

m∑

i=1

ξi

+

m∑

i=1

αi

{
‖Φ(xi )− c‖2 − r2 − ξi

}
−

m∑

i=1

βiξi
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Soft Enclosing Hypersphere (cont.)

Setting partial derivatives to 0 gives

m∑

i=1

αi = 1, c =

m∑

i=1

αiΦ(xi )

This leads to the dual form

minimize
m∑

i ,j=1

αiαjk(xi , xj )−
m∑

i=1

αik(xi , xi )

subject to 0 ≤ αi ≤ C ,

m∑

i=1

αi = 1
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Hyperplane One-Class SVM
Idea: Separate in high-dimensional feature space F , the points from the
origin (circled point) with a maximum distance, and allow ν ·m many
“outliers” which lie between the origin and the hyperplane, i.e. the −1
side.

w

ξ
‖w‖

ρ
‖w‖

+1

−1
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Hyperplane One-Class SVM (cont.)

Normal vector of the hyperplane is determined by solving the primal
quadratic optimization problem

minimize 1
2‖w‖2 + 1

νm

∑
i ξi − ρ (3)

subject to (w · Φ(xi )) ≥ ρ− ξi , ξi > 0, i = 1, . . . ,m. (4)

Lagrangian multiplier αi , βi ≥ 0 for each constraint

L(w, ξ, ρ,α,β) =
1

2
‖w‖2 + 1

νm

∑

i

ξi − ρ

−
m∑

i=1

αi ((w · Φ(xi ))− ρ+ ξi)−
m∑

i=1

βiξi

Reformulating (3) and (4) to a dual optimization problem in terms of a
kernel function k(·, ·), one obtains

T.Stibor (TUM) Course IN2207 SS2011 247 / 256



Hyperplane One-Class SVM (cont.)

maximize 1
2

∑m
i ,j=1 αiαjk(xi , xj ) (5)

subject to 0 ≤ αi ≤ 1
νm , i = 1, . . . ,m and

∑m
i=1 αi =1. (6)

Differentiating the primal with respect to w, one gets w =
∑m

i=1 αiΦ(xi ).

Recall KKT theorem: For αi > 0 the corresponding pattern xi satisfies

ρ = (w · Φ(xi )) =
m∑

j=1

αjk(xj , xi )
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Hyperplane One-Class SVM (cont.)

The decision function (left/right side of the hyperplane):

f (x) = sgn((w · Φ(xi ))− ρ)

= sgn

(
m∑

i=1

αik(xi , x)− ρ

)

ν-Property:

ν is an upper bound on the fraction of outliers.

ν is a lower bound on the fraction of Support Vectors.
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Hyperplane One-Class SVM Example

ν = 0.05 ν = 0.5
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Support Vector Regression

Basic idea: map the data x into a high-dimensional feature space F via a
nonlinear mapping Φ, and do linear regression in this space.

f (x) = (w · Φ(x)) + b with Φ : Rd → F ,w ∈ F .

Linear regression in a high dimensional feature space corresponds to
nonlinear regression in the low dimensional space R

d .

Vapnik’s ǫ-insensitive loss function:

|y − f (x)|ǫ := max{0, |y − f (x)| − ǫ}

Find function f (x) that has at most ǫ deviation from all the targets yi
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Support Vector Regression (cont.)
Estimate linear regression f (x) = (w · Φ(x)) + b leads to the problem of
minimizing the term

1

2
‖w‖2 + C

n∑

i=1

|yi − f (xi )|ǫ

In the soft margin case one needs two types of slack variables (ξ, ξ∗) for
the two cases f (xi )− yi > ǫ and yi − f (xi ) > ǫ.
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Figure is taken from Schölkopf’s and Smola’s book (Learning with Kernels)
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Support Vector Regression (cont.)

Optimization problem is given by:

minimize
1

2
‖w‖2 + C ·

n∑

i=1

(ξi + ξ∗i )

subject to
f (xi )− yi ≤ ǫ+ ξi
yi − f (xi ) ≤ ǫ+ ξ∗i
ξi , ξ

∗
i ≥ 0 for all i = 1, . . . , n
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Support Vector Regression (cont.)

Introducing Lagrange multipliers α,α∗ (dual form):

maximize −ǫ
n∑

i=1

(α∗i + αi) +
n∑

i=1

(α∗i − αi )yi

−1

2

n∑

i ,j

(α∗i − αi )(α
∗
j − αj )k(xi , xj )

subject to 0 ≤ αi , α
∗
i ≤ C for all i = 1, . . . , n and

n∑

i=1

(α∗i − αi) = 0

Regression estimate takes the form

f (x) =

n∑

i=1

(α∗i − αi )k(xi , x) + b
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Support Vector Regression (cont.)

Offset b can be computed by exploiting Karush-Kuhn-Tucker conditions:
f (xi )− yi ≤ ǫ+ ξi becomes an equality with ξi = 0 if 0 < αi < C and
yi − f (xi ) ≤ ǫ+ ξ∗i becomes an equality with ξ∗i = 0 if 0 < α∗i < C that is:

αi (ǫ+ ξi − yi + (w · Φ(xi )) + b) = 0

α∗i (ǫ+ ξ∗i + yi − (w · Φ(xi ))− b) = 0

and leads to solution

b = yi − (w · Φ(xi ))− ǫ for αi ∈ (0,C )

b = yi − (w · Φ(xi )) + ǫ for α∗i ∈ (0,C )
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Support Vector Regression Example
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sin(x)/x + rnorm(401,sd=0.03)
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Support vector regression estimation

x

y

library(kernlab);

x <- seq(-20,20,0.1);

y <- sin(x)/x + rnorm(401,sd=0.03);

# train SVM

reg.svm <- ksvm(x,y,epsilon=0.01,kpar=list(sigma=16),cross=3);

plot(x,y,type="l",lwd=3);

lines(x,predict(reg.svm,x),col="red",lwd=3);
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