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Topics Overview

• Single-Layer Networks

• Multi-Layer Networks

• Error Functions

• Weights Optimization Algorithms and Regularization

• Hopfield Network

• Boltzmann Machine

• Winner Take All Neural Network (Unsupervised
Learning)

• Evolving Neural Networks

• Comparison to Support Vector Machine
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Literature - Books

Neural Networks

for Pattern Recognition

Christopher M. Bishop

Oxford University Press, 1995

Neural Networks:

A Comprehensive Foundation (2.ed)

Simon Haykin

Prentice Hall Publishers, 1998

Introduction to the Theory

of Neural Computation

John Hertz, Andreas Krogh

and Richard Palmer

Addison Wesley, 1991

Information Theory, Inference

and Learning Algorithms

David MacKay,

Cambridge University Press, 2003

Some figures are taken from Bishop’s new book (Pattern
Recognition and Machine Learning).

– p. 3



Neural Computation

Some appealing features of
the brain that would be de-
sirable in a computational
model:

• Robust and fault
tolerant

• Easily adjust to a new
environment by
“learning”

• Deal with information
that is fuzzy,
probabilistic, noisy, or
inconsistent

• Highly parallel
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Components of a Neuron

Brain is composed of about 1011 neurons. Each neuron has on
average 7000 synaptic connections to other neurons. Neurons
processing and transmitting information (electrical signals).
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Inspiration from Neuroscience

In early days term“neural network”was motivated towards
modelling networks of real neurons in the brain.

“The perspective of statistical pattern recognition, however,
offers a much more direct and principled route to many of the
same concepts.” Christopher M. Bishop [Neural Networks for
Pattern Recognition]

In this course neural networks are presented from this
perspective (computational geometry, statistics,
optimization).
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History of Neural Networks

1943 Model of McCulloch and Pitts

1962/
1960 Adaline (Widrow and Hoff), Perceptron (Rosenblatt)

1969 Book: Perceptrons (Minsky and Papert)

Decline of neural network research

1982 Hopfield Network, (Hopfield), Recurrent Networks, Energy Function

1986/
1985 Backpropagation (Rumelhart, Hinton, Williams, Le Cun (actually first proposed by Werbos, 1974))

Era of Neural Networks

1992 A Training Algorithm for Optimal Margin Classifiers (Boser, Guyon and Vapnik), first paper on SVM

1995 Support-Vector Networks (Cortes and Vapnik)

Era of Kernel Methods (SVM, Kernel-PCA, Kernel-Fisher Discriminants, etc.)

Neural Networks are however still and frequently used

Note, this historical overview is far from being complete (see
books for detailed historical overview)
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Motivation (Application of Neural Networks)
• Handwritten Digit Recognition

• Digits are size-normalized and centered in a 28 × 28
fixed-size image of gray color values (0 − 255)

• Given a vector
x = [0, 0, 0, . . . 67, 114, 72, . . . 0, 0, 0] ∈ {0, . . . , 255}784

which represents a new (unseen) digit, to which digit
class belongs x?
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Motivation (Application of Neural Networks)
• Face Detection

see website of Yann LeCun
(http://www.cs.nyu.edu/∼yann/research/cface/)
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Motivation (Application of Neural Networks)
• Object Detection and Recognition

see website of Yann LeCun
(http://www.cs.nyu.edu/∼yann/research/norb/)
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Motivation (cont.)

Suppose that a fishpacking factory wants to automate the
process of sorting incoming fish (salmon and sea bass).
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After some preprocessing, each fish is characterized by feature
vector x = [x1, x2] (pattern), where the first component is
the lightness and the second component the length.
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Pattern belongs to Class?

?

lightness

le
ng

th

2 4 6 8 10

14
16

18
20

22

salmon

sea bass

Given labeled training data (x1, y1), . . . , (xN , yN ) ∈ R
d × Y

coming from some unknown probability distribution p(x, y).
In this example, Y = {salmon, sea bass} and d = 2. Unseen
(unlabeled) pattern belongs to class salmon or sea bass?
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Classes of Learning Algorithms

Pattern classification algorithms can be divided roughly in two
classes.

• Supervised learning (learning with a teacher)
• Training data consists of class labels
• Output is compared to target output and learning

parameters (e.g. weights in NN) are corrected
according to the magnitude of the error

• Unsupervised learning
• No class labels are available
• Cluster patterns according to some similarity

measure (e.g. Euclidean distance)
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Neural Network Classification Model

We are looking for a classification method which learns from
training data (available examples) and outputs a class
membership for unseen data (testing data).

neural network

preprocessing

x1 xd

C1 Cl

x̃1 x̃d′

For performing classification
we need:

• Similarity measure

• Discrimination func-
tion
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Dot Product as a Similarity Measure

Dot product of two vectors a = (a1, . . . , an), b = (b1, . . . , bn):

(aT ·b) = a1b1 +a2b2 + . . . anbn =
n∑

i=1

aibi; (short form aTb)

Dot product allow us to compute: lengths, angles, distances.
Length (norm):

‖a‖2 = a1a1 + a2a2 + . . . + anan = (aTa)

Example: a = (1, 1, 1) ⇒ ‖a‖ =
√

12 + 12 + 12 =
√

3

Angle:

cos φ =
(aTb)

‖a‖ ‖b‖ =
a1b1 + a2b2 + . . . + anbn√

a2
1 + a2

2 + . . . + a2
n

√
b2
1 + b2

2 + . . . + b2
n
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Dot Product as Similarity Measure (Projection)

w

x1

x2

w
T
x1

‖w‖

w
T
x2

‖w‖

> 0< 0 0

Geometric interpretation: Length of the projection of x onto
the unit vector w/‖w‖.
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Dot Product (Distances)

x1 − y1

y2 − x2

x

y
d(x,y)

d(x,y) =
√

(x1 − y1)2 + . . . + (xn − yn)2

(d(x,y))2 = ‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2 (xTy)
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Discrimination Function

y(x) = wTx + w0

where w is d-dim. weight vector and w0 the bias (threshold).

x1

x2

b

a

|y(b)|
‖w‖

w

y(x) = w1x1 + w2x2 + w0 = 0

y(x) < 0
y(x) > 0

|w0|
‖w‖

Decision boundary y(x) = 0 corresponds to a (d − 1)-dim.
hyperplane in d-dim. x-space. For d = 2 it is a straight line.
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Discrimination Function Example

x1

x2

w = (−2,−1)

x2 = −2x1 + 3 ≡ wTx + w0

|w0|
‖w‖ = 3√

5

x2 = −2x1 + 3 ⇔ −2x1 − 1x2 + 3 ≡ (w1, w2)
Tx + w0 = 0.

Vector w defines the orientation of the decision plane, bias
w0 the position in terms of its perpendicular distance from
the origin.
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Distances and Optimization

We introduce the method of Lagrange multipliers and
gradients to get an intuitive understanding for the further
lectures (gradient descent in neural networks and Lagrange
multipliers in SVMs).

Problem: find point on plane (d = 2, line) that is closest to

the origin, in other words, derive |w0|
‖w‖ .

Distance from origin to a point a = (a1, a2) on the line is

d(a,0) =
√

a2
1 + a2

2 with constraint w1a1 + w2a2 + w0 = 0,

that is:

minimize
√

a2
1 + a2

2

subject to w1a1 + w2a2 + w0 = 0
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Distances and Optimization (cont.)

Lagrangian L(a1, a2, α) =
√

a2
1 + a2

2 − α(w1a1 + w2a2 + w0)

∂L(a1, a2, λ)

∂a1
=

a1√
a2

1 + a2
2

− αw1 = 0

∂L(a1, a2, λ)

∂a2
=

a2√
a2

1 + a2
2

− αw2 = 0

∂L(a1, a2, λ)

∂α
= −w1a1 − w2a2 − w0 = 0

Solving this eq.-system gives:

a1 =
−w1w0

w2
1 + w2

2

, a2 =
−w2w0

w2
1 + w2

2
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Distances and Optimization (cont.)

Substituting back in d(a,0) gives:

√
(−w1w0)2

(w2
1 + w2

2)
2

+
(−w2w0)2

(w2
1 + w2

2)
2

=

√
w2

0(w
2
1 + w2

2)

(w2
1 + w2

2)
2

=
|w0|
‖w‖

Problem: find point a on the line that is closest to a point
b, (w1b1 + w2b2 + w0 6= 0), in other words, show

d(a,b) =
w1b1 + w2b2 + w0

‖w‖ =
|y(b)|
‖w‖

L(a1, a2, α) =
√

(a1 − b1)2 + (a2 − b2)2−α(w1a1+w2a2+w0)
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Distances and Optimization (cont.)

∂L(a1, a2, λ)

∂a1
=

a1 − b1√
(a1 − b1)2 + (a2 − b2)2

− αw1 = 0

∂L(a1, a2, λ)

∂a2
=

a2 − b2√
(a1 − b1)2 + (a2 − b2)2

− αw2 = 0

∂L(a1, a2, λ)

∂α
= −w1a1 − w2a2 − w0 = 0

Solving this eq.-system gives:

a1 =
b1w

2
2 − w1w2b2 − w1w0

w2
1 + w2

2

a2 =
b2w

2
1 − w1w2b1 − w2w0

w2
1 + w2

2
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Distances and Optimization (cont.)

Substituting back in d(a,b) gives:

[(−b1w
2
1 − w1w2b2 − w1w0

w2
1 + w2

2

)2

+

(−b2w
2
2 − w1w2b2 − w2w0

w2
1 + w2

2

)2
]1/2

=

[
w2

1(−b1w1 − w2b2 − w0)
2 + w2

2(−b2w2 − w1b1 − w0)
2

(w2
1 + w2

2)
2

]1/2

=

√
(w2

1 + w2
2)(w1b1 + w2b2 + w0)2

(w2
1 + w2

2)
2

=
|w1b1 + w2b2 + w0|

‖w‖ =
|y(b)|
‖w‖
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Lagrange multipliers

Given the following optimization problem:

maximize f(x, y) = 2 − x2 − 2y2

subject to g(x, y) = x2 + y2 − 1 = 0.

With Lagrange multipliers we can find the extrema of a
function of several variables subject to one or more
constraints.
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Lagrange multipliers (cont.)

x

y

0 2

2

-2

1

0
-1 1

-2

-1

The gradient of f ,

∇f = grad f(x)

=

(
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

)

is a vector field, where the
vectors point in the direc-
tions of the greatest increase
of f .

The direction of greatest increase is always perpendicular to
the level curves. The circle (blue curve) is the feasible region

satisfying the constraint x2 + y2 − 1 = 0
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Lagrange multipliers (cont.)

x

y

2
0

2

-2 1

-1

-1

1

-2

0

At extreme points (x, y) the
gradients of f and g are par-
allel vectors, that is

∇f(x, y) = λ∇g(x, y)

To find the pi we have to
solve

∇f(x, y) − λ∇g(x, y) = 0
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Lagrange multipliers Ex. 1

Back to our optimization problem:

maximize f(x, y) = 2 − x2 − 2y2

subject to g(x, y) = x2 + y2 − 1 = 0.

L(x, y, λ) = f(x, y)−λg(x, y) = 2−x2 − 2y2 −λ(x2 + y2 − 1)

∂L(x, y, λ)

∂x
= −2x − 2λx = 0

∂L(x, y, λ)

∂y
= −4y − 2λy = 0

∂L(x, y, λ)

∂λ
= −x2 − y2 + 1 = 0

Solving the equation system gives: x = ±1 and y = 0
(λ = −1) and x = 0 and y = ±1 (λ = −2).
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Lagrange multipliers Ex. 2

Find the point pt on the circle formed by the intersection of
the unit sphere with the plane x + y + z = 1

2 that is closest to

the point pg = (1, 2, 3), i.e. min ‖pg − pt‖2 ≡̂ min f(x, y, z)

f(x, y, z) = (x − 1)2 + (y − 2)2 + (z − 3)2

g1(x, y, z) = x2 + y2 + z2 − 1

g2(x, y, z) = x + y + z − 1

2
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Lagrange multipliers Ex. 2 (cont.)

L(x, y, z,λ) = (x − 1)2 + (y − 2)2 + (z − 3)2

+λ1

(
x2 + y2 + z2 − 1

)
+ λ2

(
x + y + z − 1

2

)

∂L(x, y, z,λ)

∂x
= 2(x − 1) + 2λ1x + λ2 = 0

∂L(x, y, z,λ)

∂y
= 2(y − 2) + 2λ1y + λ2 = 0

∂L(x, y, z,λ)

∂z
= 2(z − 3) + 2λ1z + λ2 = 0

∂L(x, y, z,λ)

∂λ1
= x2 + y2 + z2 − 1 = 0

∂L(x, y, z,λ)

∂λ2
= x + y + z − 1

2
= 0
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Lagrange multipliers Ex. 2 (cont.)

Solving this equation system gives:

x1 = 1
6 − 1

12

√
66, y1 = 1

6 , z1 = 1
6 + 1

12

√
66

x1 = −0.51, y1 = 0.16, z1 = 0.84

x2 = 1
6 + 1

12

√
66, y2 = 1

6 , z2 = 1
6 − 1

12

√
66

x2 = 0.84, y2 = 0.16, z2 = −0.51

– p. 31



Lagrange multipliers Ex. 2 (cont.)
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Method of Steepest Descent

Let E(w) be a continuously differentiable function of some
unknown (weight) vector w.

Find an optimal solution w⋆ that satisfies the condition

E(w⋆) ≤ E(w).

The necessary condition for optimality is

∇E(w⋆) = 0.

Let us consider the following iterative descent:

Start with an initial guess w(0) and generate sequence of

weight vectors w(1),w(2), . . . such that

E(w(i+1)) ≤ E(w(i)).
– p. 33



Steepest Descent Algorithm

w(i+1) = w(i) − η∇E(w(i))

where η is a positive constant called learning rate.

At each iteration step the algorithm applies the correction

∆w(i) = w(i+1) − w(i)

= −η∇E(w(i))

Steepest descent algorithm satisfies:

E(w(i+1)) ≤ E(w(i)),

to see this, use first-order Taylor expansion around w(i) to

approximate E(w(i+1)) as E(w(i)) + (∇E(w(i)))T ∆w(i).
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Steepest Descent Algorithm (cont.)

E(w(i+1)) ≈ E(w(i)) + (∇E(w(i)))T ∆w(i)

= E(w(i)) − η‖∇E(w(i))‖2

For positive learning rate η,E(w(i)) decreases in each
iteration step (for small enough learning rates).
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Steepest Descent Algorithm Example

Black points denote different starting values. Learning rate η
is properly chosen, however for starting value (1, 1), algorithm
converges not to the global minimum. It follows steepest
descent in the“wrong direction”, in other words, gradient
based algorithms are local search algorithms.

−2 −1 0 1 2

−
2

−
1

0
1

2

z = (3x1
2 + x2)exp(− x1

2 − x2
2)

η = 0.25
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Steepest Descent Algorithm Example (cont.)

Learning rate η = 1.0 is too large, algorithm oscillates in a
“zig-zag”manner or“overleap”the global minimum.

−2 −1 0 1 2

−
2

−
1

0
1

2

z = (3x1
2 + x2)exp(− x1

2 − x2
2)

η = 1
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Steepest Descent Algorithm Example (cont.)

Learning rate η = 0.005 is too small, algorithm converges
“very slowly”.

−2 −1 0 1 2

−
2

−
1

0
1

2

z = (3x1
2 + x2)exp(− x1

2 − x2
2)

η = 0.005
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Single-Layer Network

x0 = 1 x1 xd

w0 w1 wd

y

bias

output

inputs

Equivalent notation:

y(x) = w̃T x̃ =
d∑

i=0

wixi

where w̃ = (w0,w) and x̃ = (1,x).
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Single-Layer Network (Multiple classes)
• Extension of linear discrimination functions to K > 2

classes.

• K-class discrimination function by combining a number
of two-class discrimination functions.

x0 x1 xd

y1 yK

bias

outputs

inputs
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Multiple classes (cont.)

One-versus-the-rest:
K − 1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in
that class.

Leads to regions that are
ambiguously classified.

R1

R2

R3

?

C1

not C1

C2

not C2
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Multiple classes (cont.)

One-versus-one:

• K(K − 1)/2 discriminant functions, one for every
possible pair of classes.

• Example: K = 3, discriminate(C1, C2),
discriminate(C1, C3), discriminate(C2, C3).

Leads again to regions
that are ambiguously
classified.

R1

R2

R3

?C1

C2

C1

C3

C2

C3
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Multiple classes (cont.)

Avoid problem of ambiguous decision regions:

K-class discrimination function

yk(x) = wT
k x + wk0 =

d∑

i=1

wkixi + wk0

assign x to class Ck if yk(x) > yj(x) for all j 6= k.

Such a discrimination func-
tion leads to decision regions
that are always singly con-
nected and convex.

Ri

Rj

Rk

xA

xB

x̂

All points of the form x̂ = αxA + (1 − α)xB, that is, on the
line connecting xA and xB lie in Rk ⇒ singly connected and
convex. – p. 43



Activation functions

Discrimination functions of the form y(x) = wTx + w0 are
simple linear functions of the input variables x, where
distances are measured by means of the dot product.

Let us consider the non-linear logistic sigmoid activation
function g(·) for limiting the output to (0, 1), that is,

y(x) = g(wTx + w0),

where

g(a) =
1

1 + exp(−a)
0-2-4

1

0.8

0.6

4

0.4

0.2

2

0

a

Single-layer network with a logistic sigmoid activation
function can also output posterior probabilities (rather than
geometric distances). – p. 44



Activation functions (cont.)

Heaviside step function:

g(a) =

{
0 if a < 0

1 if a ≥ 0

0-2 2 4-4

1

0.8

0.6

0.4

0.2

0

a

Hyperbolic tangent function:

g(a) = tanh(a) =
exp(a) − exp(−a)

exp(a) + exp(−a)

Note, tanh(a) ∈ (−1, 1)

1

0 2

0.5

0

-0.5

-1

-4 -2 4

a
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