
Single-Layer Network & Probabilities

Consider a two-class classification problem in which the
class-conditional densities are given by Gaussian distributions

p(x|Ck) =
1

(2π)d/2|Σ|1/2
exp

{
−

1

2
(x− µk)

TΣ−1(x− µk)

}

with equal cov. matrices Σ1 = Σ2 = Σ, where µk is a
d-dimensional mean vector and Σ is a d× d covariance
matrix. |Σ| is the determinant of Σ. Note, Σ must be
invertible (non-singular). Location is determined by µ

whereas shape is determined by Σ.

We will show that posterior probability p(C1|x) can be
expressed as single layer network output:

g(wTx + w0), where g(a) =
1

1 + exp (−a)
– p. 46



Two-dim. Gaussian Distribution

p(x) =
1

(2π)d/2|Σ|1/2
exp

{
−

1

2
(x− µ)TΣ−1(x− µ)

}

µ =

[
0

0

]
Σ =

[
1 0

0 1

]
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Two-dim. Gaussian Distribution
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Two-dim. Gaussian Distribution (cont.)
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Bayes’ Theorem and Posterior Probability

Joint probability density function of finding a pattern that has
feature value x and is in class Ci can be written as:

p(x, Ci) = p(Ci|x)p(x) = p(x|Ci)p(Ci) = p(Ci,x)

Bayes’ theorem to compute the posterior probability :

p(Ci|x) =
p(x|Ci) p(Ci)

p(x)
, p(x) =

∑

i

p(x|Ci) p(Ci)

The posterior probability for class C1 can be written as:

p(C1|x) =
p(x|C1) p(C1)

p(x|C1) p(C1) + p(x|C2) p(C2)
– p. 50



Bishop’s Bayes Example

The red box contains 6 oranges and 2 apples, the blue box
contains 1 orange and 3 apples. Suppose we pick the red box
40 % of the time and the blue box 60 % of the time. Thanks
to Bayes’ theorem we can answer questions such as:

• What is the overall probability that we pick an apple?

• Given that we have chosen an orange, what is the proba-
bility that the box we chose was the blue one?
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Bishop’s Bayes Example (cont.)

For the sake of clarity let us introduce random variables B for
box and F for fruit. B can take one of the two possibilities
B = r (for red) and B = b (for blue); and F = o (for orange)
and F = a (for apple).

The prior probability of selecting the red box is

p(B = r) =
4

10

and of selecting the blue box

p(B = b) =
6

10
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Bishop’s Bayes Example (cont.)

From given information we can write out all four conditional
probabilities of given the selected box and picking the type of
fruit.

p(F = a|B = r) =
1

4

p(F = o|B = r) =
3

4

p(F = a|B = b) =
3

4

p(F = o|B = b) =
1

4
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Bishop’s Bayes Example (cont.)

Back to our question: What is the overall probability that we
pick an apple?

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1

4
·

4

10
+

3

4
·

6

10
=

11

20

from this it follows that p(F = o) = 1− 11
20 = 9

20 . Although
there are more oranges in total, picking an apple is more likely.

Back to our second question: Given that we have chosen an
orange, what is the probability that the box we chose was the
blue one, that is p(B = b|F = o)?
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Bishop’s Bayes Example (cont.)

p(B = b|F = o) =
p(F = o|B = b)p(B = b)

p(F = o)
=

1

4
·

6

10
·
20

9
=

1

3

and that we chose the red box:

p(B = r|F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3

4
·

4

10
·
20

9
=

2

3

The denominator in Bayes’ theorem ensures that posterior
probability summed over all classes Ci gives 1. In this
examples, 1 = p(B = b|F = o) + p(B = r|F = o).

p(Ci|x) =
p(x|Ci) p(Ci)

p(x)
, p(x) =

∑

i

p(x|Ci) p(Ci)
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Visualized Fish Posterior Probability
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Decide C1 if p(x|C1) p(C1) > p(x|C2) p(C2), otherwise decide
C2. This decision rule will divide the input space in regions Ri

such that all points in Ri are assigned to class Ci. – p. 56



Bayesian Decision Theory

• How to make an optimal decision given the appropriate
probabilities?

• Minimize the error of assigning x to the wrong class.

• Intuitively we would choose the class having the higher
posterior probability.

An error occurs when x belonging to class C1 is assigned to
class C2 or vice versa. The probability of this occurring is
given by:

p(error) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=

∫

R1

p(x, C2)dx +

∫

R2

p(x, C1)dx
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Error Probabilities in Bay. Decision Theory

R1 R2

x

p(x|Ci) p(Ci)

∫
R1

p(x|C2) p(C2)dx
∫
R2

p(x|C1) p(C1)dx

C1
C2

Probability(x falls in R1 and has true nature C2)

Probability(x falls in R2 and has true nature C1)
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Error Probabilities in Bay. Decision Theory

R1 R2

x

p(x|Ci) p(Ci)

∫
R1

p(x|C2) p(C2)dx
∫
R2

p(x|C1) p(C1)dx

C1
C2

Probability(x falls in R1 and has true nature C2)

Probability(x falls in R2 and has true nature C1)

– p. 59



Error Probabilities in Bay. Decision Theory
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Single-Layer Network & Probabilities (cont.)

Posterior probability for class C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp (−a)
= g(a)

where

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)

and g(a) is our known sigmoid logistic function. Observe:

1

1 + exp
(
− ln p(x|C1)p(C1)

p(x|C2)p(C2)

) =
1

1 + p(x|C2)p(C2)
p(x|C1)p(C1)

= p(C1|x) 1
1+ a

b

= b
b+a
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Single-Layer Network & Probabilities (cont.)

p(x|Ck) =
1

(2π)d/2|Σ|1/2
exp

{
−

1

2
(x− µk)

TΣ−1(x− µk)

}
(1)

Substitute (1) in a = ln p(x|C1)p(C1)
p(x|C2)p(C2)

gives a = wTx + w0 where

w = Σ−1(µ1 − µ2)

w0 = −
1

2
µ

T
1 Σ−1

µ1 +
1

2
µ

T
2 Σ−1

µ2 + ln
p(C1)

p(C2)

Network output g(wTx + w0) = p(C1|x) gives posterior
probability. Observe that quadratic terms in x from exp{·}
have cancelled. This leads to a linear function of x and gives
decision boundaries that are linear.
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Single-Layer Network & Priors
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Perceptron

Note, so far we have not seen a method for finding the weight
vector w to obtain a linearly separation of the training set.

Let g(a) be (sign) activation function

g(a) =

{
−1 if a < 0

+1 if a ≥ 0

and decision function

y = g

(
d∑

i=0

wixi

)
= g(wTx)→ {−1,+1}

Note: x0 is set to +1, that is, x = (1, x1, . . . , xd). Training

pattern consists of (x, t) ∈ R
d × {−1,+1}

– p. 64



Training the Perceptron

Training problem for the Perceptron is to find weight vector
such that:

wTx ≥ 0 for every input pattern x belonging to class {+1}

wTx < 0 for every input pattern x belonging to class {−1}

where the weights are updated whenever training example is
missclassified, that is,

• wnew = w − ηx, if wTx ≥ 0 and t ∈ {−1}

• wnew = w + ηx, if wTx < 0 and t ∈ {+1}

• no correction if correctly classified

Weight correction learning rule can be summarized as:

wnew = w + ηx t if x is missclassified

– p. 65



Perceptron Learning Algorithm

input : (x1, t1), . . . , (xN , tN ) ∈ R
d × {−1,+1}, η ∈

R+,max.epoch ∈ N

output: w

begin
Randomly initialize w

epoch← 0
repeat

for i← 1 to N do

if ti(w
Txi) ≤ 0 then

w← w + ηxi ti

epoch← epoch + 1
until (epoch = max.epoch) or (no change in w)
return w

end
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Training the Perceptron (cont.)

Geometrical explanation: If x belongs to {+1} and

wTx < 0⇒ angle between x and w is greater than 90◦,
rotate w in direction of x to bring missclassified x into the
positive half space defined by w. Same idea if x belongs to
{−1} and wTx ≥ 0.

+1 positive halfspace

−1 negative halfspace

x

w

+1 positive halfspace

−1 negative halfspace

x

wwnew
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Perceptron Error Reduction

Recall: missclassifcation results in:

wnew = w + ηx t,

this reduces the error since

−wnew(x t)T = −w(x t)T − η︸︷︷︸
>0

(x t)(x t)T︸ ︷︷ ︸
‖xt‖2>0

< −wTxt

How often one has to cycle through the patterns in the
training set?

• A finite number of steps?
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Perceptron Convergence Theorem

Proposition 1 Given a finite and linearly separable training
set. The perceptron converges after some finite steps.

Proof: (see chalkboard)
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Perceptron Algorithm (R-code)
###################################################

perceptron <- function(w,X,t,eta,max.epoch) {

###################################################

N <- nrow(X)/2;

epoch <- 0;

repeat {

w.old <- w;

for (i in 1:(2*N)) {

if ( t[i]*y(X[i,],w) <= 0 )

w <- w + eta * t[i] * X[i,];

}

epoch <- epoch + 1;

if ( identical(w.old,w) || epoch = max.epoch ) {

break; # terminate if no change in weights or max.epoch reached

}

}

return (w);

}
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Perceptron Algorithm Visualization
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Perceptron Algorithm Visualization
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Least Mean Square

Let us consider the weight correction in terms of an error

function E(i) = 1
2( y(i)

︸︷︷︸
g(wT

x)

−t(i))2, where g(·) is a differentiable

function. Apply gradient descent rule

w(i+1) = w(i) − η
∂E(i)

∂w
, where

∂E(i)

∂w
= (y(i) − t(i))︸ ︷︷ ︸

δ(i)

x(i)

gives change in weights

∆w = −ηδ(i)x(i) = −η
∂E(i)

∂w

Delta rule ≡ {Adaline rule, Widrow-Hoff rule, Least Mean
Square (LMS) }

– p. 73



Least Mean Square

Note, if we choose g(a) = a to be the linear activation

function wTx, then there exists a closed analytical solution
(pseudo-inverse solution).

Let g(a) be a differentiable non-linear activation function,

where a = wTx.

∂E(i)

∂w
= δ(i)x(i), where δ(i) = g′(a)(y(i) − t(i))

gives change in weights

∆w = −ηδ(i)x(i) = −η
∂E(i)

∂w

– p. 74



LMS Online/Batch Learning

Online learning:

• Update weight w(i+1) = w(i) − η ∂E(i)

∂w
(pattern by

pattern).

This type of online learning is also called stochastic gradient
descent, it is an approximation of the true gradient.

Batch learning:

• Update weight w(i+1) = w(i) − η
∑N

i=1
∂E(i)

∂w
by

computing derivatives for each pattern separately and
then sum over all patterns.

– p. 75



Minimum Squared Error and Pseudoinverse

Recall that we want to minimize the squared error

E(w) =
N∑

i=1

1

2

(
y(i) − t(i)

)2
where y(i) = wTx(i)

Let X be the N × d̃ matrix where d̃ = d + 1 and ith row
denotes training pattern x(i)T , w is weight vector, t class
label vector.




x10 x11 · · · x1d

x20 x21 · · · x2d
...

...
...

...
...

...

xN0 xN1 · · · xNd







w0

w1
...

wd




=




t0

t1
...
...

tN




Xw = t
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MSE and Pseudoinverse (cont.)

Problem: find weight vector w, that is, solve Xw = t.

If X is non-singular solve w = X−1t, however, if X is
rectangular (which is usually the case), then there are more
equations than unknowns, that is, the equation system is
overdetermined.

Let us search for w that minimizes the error

e = Xw− t

one approach is to minimize the squared length of the error
vector e

J(w̃) = ‖Xw − t‖2 =
N∑

i=1

(
wTx(i) − t(i)

)2
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MSE and Pseudoinverse (cont.)

Forming the gradient

∇J =
N∑

i=1

2
(
wTx(i) − t(i)

)
x(i) = 2XT (Xw− t)

and setting ∇J to zero gives XTXw = XT t. Observe that

XTX is a d̃× d̃ matrix which often is non-singular. In the
non-singular case, one can solve w uniquely as

w =
(
XTX

)−1
XT t

= X†t

The d̃×N matrix X† ≡
(
XTX

)−1
XT is called pseudoinverse

of X.

– p. 78



Linear Separability

Decision boundaries of single-layer networks are linear
(hyperplanar in higher dimensions).

• Very restricted class of decision boundaries

• Examples:
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XOR-Problem Points are not linearly separable
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Probability for Linear Separability

• Probability that a random set of points will be linearly
separable

• Suppose we have N points distributed at random in d
dimensions in general position (not collinear)

• Randomly assign each of the points to one of the two
classes C1 and C2 (with eq. probability)

• For N data points there are 2N possible class
assignments (dichotomies ≡ binary partitions)

Question: What fraction F (N, d) of these dichotomies is
linearly separable?
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Probability for Linear Separability (cont.)

F (N, d) =

{
1 when N ≤ d + 1

1
2N−1

∑d
i=0

(N−1
i

)
when N ≥ d + 1

5

d = 1

5
20

N/(d + 1)
1 2 3 4

1.0

0.8

0.6

0.4

0.2

If number of points is ≤ d + 1, then any labeling leads to a
separable problem.
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