
Single-Layer Network & Probabilities

Consider a two-class classification problem in which the
class-conditional densities are given by Gaussian distributions

p(x|Ck) =
1

(2π)d/2|Σ|1/2
exp

{
−

1

2
(x− µk)

TΣ−1(x− µk)

}

with equal cov. matrices Σ1 = Σ2 = Σ, where µk is a
d-dimensional mean vector and Σ is a d× d covariance
matrix. |Σ| is the determinant of Σ. Note, Σ must be
invertible (non-singular). Location is determined by µ

whereas shape is determined by Σ.

We will show that posterior probability p(C1|x) can be
expressed as single layer network output:

g(wTx + w0), where g(a) =
1

1 + exp (−a)
– p. 46

Two-dim. Gaussian Distribution

p(x) =
1

(2π)d/2|Σ|1/2
exp

{
−

1

2
(x− µ)TΣ−1(x− µ)

}

µ =

[
0

0

]
Σ =

[
1 0

0 1

]

-3 -2 -1 0 1 2 3-3
-2

-1
 0

 1
 2

 3

 0

 0.05

 0.1

 0.15

 0.2

– p. 47

Two-dim. Gaussian Distribution

0 1 2 3 4 5 6

0
1

2
3

4
5

6

0 1 2 3 4 5 6

0
1

2
3

4
5

6

µ =

[
3

3

]
Σ =

[
1 0

0 1

]
Σ =

[
0.1 0

0 1

]

– p. 48

Two-dim. Gaussian Distribution (cont.)

0 1 2 3 4 5 6

0
1

2
3

4
5

6

0 1 2 3 4 5 6

0
1

2
3

4
5

6

µ =

[
3

3

]
Σ =

[
1 0

0 0.1

]
Σ =

[
1 0.5

0.5 1

]

– p. 49

Bayes’ Theorem and Posterior Probability

Joint probability density function of finding a pattern that has
feature value x and is in class Ci can be written as:

p(x, Ci) = p(Ci|x)p(x) = p(x|Ci)p(Ci) = p(Ci,x)

Bayes’ theorem to compute the posterior probability :

p(Ci|x) =
p(x|Ci) p(Ci)

p(x)
, p(x) =

∑

i

p(x|Ci) p(Ci)

The posterior probability for class C1 can be written as:

p(C1|x) =
p(x|C1) p(C1)

p(x|C1) p(C1) + p(x|C2) p(C2)
– p. 50

Bishop’s Bayes Example

The red box contains 6 oranges and 2 apples, the blue box
contains 1 orange and 3 apples. Suppose we pick the red box
40 % of the time and the blue box 60 % of the time. Thanks
to Bayes’ theorem we can answer questions such as:

• What is the overall probability that we pick an apple?

• Given that we have chosen an orange, what is the proba-
bility that the box we chose was the blue one?

– p. 51

Bishop’s Bayes Example (cont.)

For the sake of clarity let us introduce random variables B for
box and F for fruit. B can take one of the two possibilities
B = r (for red) and B = b (for blue); and F = o (for orange)
and F = a (for apple).

The prior probability of selecting the red box is

p(B = r) =
4

10

and of selecting the blue box

p(B = b) =
6

10

– p. 52

Bishop’s Bayes Example (cont.)

From given information we can write out all four conditional
probabilities of given the selected box and picking the type of
fruit.

p(F = a|B = r) =
1

4

p(F = o|B = r) =
3

4

p(F = a|B = b) =
3

4

p(F = o|B = b) =
1

4

– p. 53

Bishop’s Bayes Example (cont.)

Back to our question: What is the overall probability that we
pick an apple?

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1

4
·

4

10
+

3

4
·

6

10
=

11

20

from this it follows that p(F = o) = 1− 11
20 = 9

20 . Although
there are more oranges in total, picking an apple is more likely.

Back to our second question: Given that we have chosen an
orange, what is the probability that the box we chose was the
blue one, that is p(B = b|F = o)?

– p. 54

Bishop’s Bayes Example (cont.)

p(B = b|F = o) =
p(F = o|B = b)p(B = b)

p(F = o)
=

1

4
·

6

10
·
20

9
=

1

3

and that we chose the red box:

p(B = r|F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3

4
·

4

10
·
20

9
=

2

3

The denominator in Bayes’ theorem ensures that posterior
probability summed over all classes Ci gives 1. In this
examples, 1 = p(B = b|F = o) + p(B = r|F = o).

p(Ci|x) =
p(x|Ci) p(Ci)

p(x)
, p(x) =

∑

i

p(x|Ci) p(Ci)

– p. 55

Visualized Fish Posterior Probability

lightness

le
ng

th

2 4 6 8 10

14
16

18
20

22

p(x, C1) = p(x|C1) p(C1)

p(x, C2) = p(x|C2) p(C2)

R1

R2

lightness

le
ng

th

2 4 6 8 10

14
16

18
20

22

p(x) = p(x|C1) p(C1) + p(x|C2) p(C2)

Decide C1 if p(x|C1) p(C1) > p(x|C2) p(C2), otherwise decide
C2. This decision rule will divide the input space in regions Ri

such that all points in Ri are assigned to class Ci. – p. 56

Bayesian Decision Theory

• How to make an optimal decision given the appropriate
probabilities?

• Minimize the error of assigning x to the wrong class.

• Intuitively we would choose the class having the higher
posterior probability.

An error occurs when x belonging to class C1 is assigned to
class C2 or vice versa. The probability of this occurring is
given by:

p(error) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=

∫

R1

p(x, C2)dx +

∫

R2

p(x, C1)dx

– p. 57

Error Probabilities in Bay. Decision Theory

R1 R2

x

p(x|Ci) p(Ci)

∫
R1

p(x|C2) p(C2)dx
∫
R2

p(x|C1) p(C1)dx

C1
C2

Probability(x falls in R1 and has true nature C2)

Probability(x falls in R2 and has true nature C1)

– p. 58

Error Probabilities in Bay. Decision Theory

R1 R2

x

p(x|Ci) p(Ci)

∫
R1

p(x|C2) p(C2)dx
∫
R2

p(x|C1) p(C1)dx

C1
C2

Probability(x falls in R1 and has true nature C2)

Probability(x falls in R2 and has true nature C1)

– p. 59

Error Probabilities in Bay. Decision Theory

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

R1 R2

x

p(x|Ci) p(Ci)

∫
R1

p(x|C2) p(C2)dx
∫
R2

p(x|C1) p(C1)dx

C1
C2

Probability(x falls in R1 and has true nature C2)

Probability(x falls in R2 and has true nature C1)

reducible error

– p. 60

Single-Layer Network & Probabilities (cont.)

Posterior probability for class C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp (−a)
= g(a)

where

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)

and g(a) is our known sigmoid logistic function. Observe:

1

1 + exp
(
− ln p(x|C1)p(C1)

p(x|C2)p(C2)

) =
1

1 + p(x|C2)p(C2)
p(x|C1)p(C1)

= p(C1|x) 1
1+ a

b

= b
b+a

– p. 61

Single-Layer Network & Probabilities (cont.)

p(x|Ck) =
1

(2π)d/2|Σ|1/2
exp

{
−

1

2
(x− µk)

TΣ−1(x− µk)

}
(1)

Substitute (1) in a = ln p(x|C1)p(C1)
p(x|C2)p(C2)

gives a = wTx + w0 where

w = Σ−1(µ1 − µ2)

w0 = −
1

2
µ

T
1 Σ−1

µ1 +
1

2
µ

T
2 Σ−1

µ2 + ln
p(C1)

p(C2)

Network output g(wTx + w0) = p(C1|x) gives posterior
probability. Observe that quadratic terms in x from exp{·}
have cancelled. This leads to a linear function of x and gives
decision boundaries that are linear.

– p. 62

Single-Layer Network & Priors

0 2 4 6

0
2

4
6

x

y

−2 0 2 4 6

0
2

4
6

x

y

p(C1) = p(C2) p(C1) = 3/4, p(C2) = 1/4

– p. 63

Perceptron

Note, so far we have not seen a method for finding the weight
vector w to obtain a linearly separation of the training set.

Let g(a) be (sign) activation function

g(a) =

{
−1 if a < 0

+1 if a ≥ 0

and decision function

y = g

(
d∑

i=0

wixi

)
= g(wTx)→ {−1,+1}

Note: x0 is set to +1, that is, x = (1, x1, . . . , xd). Training

pattern consists of (x, t) ∈ R
d × {−1,+1}

– p. 64

Training the Perceptron

Training problem for the Perceptron is to find weight vector
such that:

wTx ≥ 0 for every input pattern x belonging to class {+1}

wTx < 0 for every input pattern x belonging to class {−1}

where the weights are updated whenever training example is
missclassified, that is,

• wnew = w − ηx, if wTx ≥ 0 and t ∈ {−1}

• wnew = w + ηx, if wTx < 0 and t ∈ {+1}

• no correction if correctly classified

Weight correction learning rule can be summarized as:

wnew = w + ηx t if x is missclassified

– p. 65

Perceptron Learning Algorithm

input : (x1, t1), . . . , (xN , tN) ∈ R
d × {−1,+1}, η ∈

R+,max.epoch ∈ N

output: w

begin
Randomly initialize w

epoch← 0
repeat

for i← 1 to N do

if ti(w
Txi) ≤ 0 then

w← w + ηxi ti

epoch← epoch + 1
until (epoch = max.epoch) or (no change in w)
return w

end

– p. 66

Training the Perceptron (cont.)

Geometrical explanation: If x belongs to {+1} and

wTx < 0⇒ angle between x and w is greater than 90◦,
rotate w in direction of x to bring missclassified x into the
positive half space defined by w. Same idea if x belongs to
{−1} and wTx ≥ 0.

+1 positive halfspace

−1 negative halfspace

x

w

+1 positive halfspace

−1 negative halfspace

x

wwnew

– p. 67

Perceptron Error Reduction

Recall: missclassifcation results in:

wnew = w + ηx t,

this reduces the error since

−wnew(x t)T = −w(x t)T − η︸︷︷︸
>0

(x t)(x t)T︸ ︷︷ ︸
‖xt‖2>0

< −wTxt

How often one has to cycle through the patterns in the
training set?

• A finite number of steps?

– p. 68

Perceptron Convergence Theorem

Proposition 1 Given a finite and linearly separable training
set. The perceptron converges after some finite steps.

Proof: (see chalkboard)

– p. 69

Perceptron Algorithm (R-code)
###

perceptron <- function(w,X,t,eta,max.epoch) {

###

N <- nrow(X)/2;

epoch <- 0;

repeat {

w.old <- w;

for (i in 1:(2*N)) {

if (t[i]*y(X[i,],w) <= 0)

w <- w + eta * t[i] * X[i,];

}

epoch <- epoch + 1;

if (identical(w.old,w) || epoch = max.epoch) {

break; # terminate if no change in weights or max.epoch reached

}

}

return (w);

}

– p. 70

Perceptron Algorithm Visualization

−4 −2 0 2 4 6

−
4

−
2

0
2

4
6

X[, 2:3][,1]

X
[,

2:
3]

[,2
]

−4 −2 0 2 4 6

−
4

−
2

0
2

4
6

X[, 2:3][,1]

X
[,

2:
3]

[,2
]

One epoch terminate if no change in w

– p. 71

Perceptron Algorithm Visualization

−4 −2 0 2 4 6

−
4

−
2

0
2

4
6

X[, 2:3][,1]

X
[,

2:
3]

[,2
]

−4 −2 0 2 4 6

−
4

−
2

0
2

4
6

X[, 2:3][,1]

X
[,

2:
3]

[,2
]

One epoch terminate if no change in w

– p. 72

Least Mean Square

Let us consider the weight correction in terms of an error

function E(i) = 1
2(y(i)

︸︷︷︸
g(wT

x)

−t(i))2, where g(·) is a differentiable

function. Apply gradient descent rule

w(i+1) = w(i) − η
∂E(i)

∂w
, where

∂E(i)

∂w
= (y(i) − t(i))︸ ︷︷ ︸

δ(i)

x(i)

gives change in weights

∆w = −ηδ(i)x(i) = −η
∂E(i)

∂w

Delta rule ≡ {Adaline rule, Widrow-Hoff rule, Least Mean
Square (LMS) }

– p. 73

Least Mean Square

Note, if we choose g(a) = a to be the linear activation

function wTx, then there exists a closed analytical solution
(pseudo-inverse solution).

Let g(a) be a differentiable non-linear activation function,

where a = wTx.

∂E(i)

∂w
= δ(i)x(i), where δ(i) = g′(a)(y(i) − t(i))

gives change in weights

∆w = −ηδ(i)x(i) = −η
∂E(i)

∂w

– p. 74

LMS Online/Batch Learning

Online learning:

• Update weight w(i+1) = w(i) − η ∂E(i)

∂w
(pattern by

pattern).

This type of online learning is also called stochastic gradient
descent, it is an approximation of the true gradient.

Batch learning:

• Update weight w(i+1) = w(i) − η
∑N

i=1
∂E(i)

∂w
by

computing derivatives for each pattern separately and
then sum over all patterns.

– p. 75

Minimum Squared Error and Pseudoinverse

Recall that we want to minimize the squared error

E(w) =
N∑

i=1

1

2

(
y(i) − t(i)

)2
where y(i) = wTx(i)

Let X be the N × d̃ matrix where d̃ = d + 1 and ith row
denotes training pattern x(i)T , w is weight vector, t class
label vector.




x10 x11 · · · x1d

x20 x21 · · · x2d
...

...
...

...
...

...

xN0 xN1 · · · xNd







w0

w1
...

wd




=




t0

t1
...
...

tN




Xw = t

– p. 76

MSE and Pseudoinverse (cont.)

Problem: find weight vector w, that is, solve Xw = t.

If X is non-singular solve w = X−1t, however, if X is
rectangular (which is usually the case), then there are more
equations than unknowns, that is, the equation system is
overdetermined.

Let us search for w that minimizes the error

e = Xw− t

one approach is to minimize the squared length of the error
vector e

J(w̃) = ‖Xw − t‖2 =
N∑

i=1

(
wTx(i) − t(i)

)2

– p. 77

MSE and Pseudoinverse (cont.)

Forming the gradient

∇J =
N∑

i=1

2
(
wTx(i) − t(i)

)
x(i) = 2XT (Xw− t)

and setting ∇J to zero gives XTXw = XT t. Observe that

XTX is a d̃× d̃ matrix which often is non-singular. In the
non-singular case, one can solve w uniquely as

w =
(
XTX

)−1
XT t

= X†t

The d̃×N matrix X† ≡
(
XTX

)−1
XT is called pseudoinverse

of X.

– p. 78

Linear Separability

Decision boundaries of single-layer networks are linear
(hyperplanar in higher dimensions).

• Very restricted class of decision boundaries

• Examples:

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

C1

C1 C2

C2

x1

x2

XOR-Problem Points are not linearly separable

– p. 79

Probability for Linear Separability

• Probability that a random set of points will be linearly
separable

• Suppose we have N points distributed at random in d
dimensions in general position (not collinear)

• Randomly assign each of the points to one of the two
classes C1 and C2 (with eq. probability)

• For N data points there are 2N possible class
assignments (dichotomies ≡ binary partitions)

Question: What fraction F (N, d) of these dichotomies is
linearly separable?

– p. 80

Probability for Linear Separability (cont.)

F (N, d) =

{
1 when N ≤ d + 1

1
2N−1

∑d
i=0

(N−1
i

)
when N ≥ d + 1

5

d = 1

5
20

N/(d + 1)
1 2 3 4

1.0

0.8

0.6

0.4

0.2

If number of points is ≤ d + 1, then any labeling leads to a
separable problem.

– p. 81

	Single-Layer Network & Probabilities
	Two-dim. Gaussian Distribution
	Two-dim. Gaussian Distribution
	Two-dim. Gaussian Distribution (cont.)
	Bayes' Theorem and Posterior Probability
	Bishop's Bayes Example
	Bishop's Bayes Example (cont.)
	Bishop's Bayes Example (cont.)
	Bishop's Bayes Example (cont.)
	Bishop's Bayes Example (cont.)
	Visualized Fish Posterior Probability
	Bayesian Decision Theory
	Error Probabilities in Bay. Decision Theory
	Error Probabilities in Bay. Decision Theory
	Error Probabilities in Bay. Decision Theory
	Single-Layer Network & Probabilities (cont.)
	Single-Layer Network & Probabilities (cont.)
	Single-Layer Network & Priors
	Perceptron
	Training the Perceptron
	Perceptron Learning Algorithm
	Training the Perceptron (cont.)
	Perceptron Error Reduction
	Perceptron Convergence Theorem
	Perceptron Algorithm (R-code)
	Perceptron Algorithm Visualization
	Perceptron Algorithm Visualization
	Least Mean Square
	Least Mean Square
	LMS Online/Batch Learning
	Minimum Squared Error and Pseudoinverse
	MSE and Pseudoinverse (cont.)
	MSE and Pseudoinverse (cont.)
	Linear Separability
	Probability for Linear Separability
	Probability for Linear Separability (cont.)

